摘要:
A method for making a thermal interface material includes the steps of: (a) providing an array of carbon nanotubes formed on a substrate, the carbon nanotubes having interfaces defined therebetween; (b) providing a transferring device and disposing at least one low melting point metallic material above the array of carbon nanotubes, using the transferring device; and (c) heating the low melting point metallic material and the array of carbon nanotube to a certain temperature to make the at least one low melting point metallic material melt, then flow into the interspaces between the carbon nanotubes, and combine (e.g., mechanically) with the array of carbon nanotubes to acquire a carbon-nanotube-based thermal interface material.
摘要:
A heat dissipation apparatus includes a heat sink (30) and a heat spreader (10). The heat spreader includes a heating area (11) and a cooling area (13), and defines a vapor chamber (16) therein. A plurality of artery meshes (151) are arranged in the vapor chamber and extend from the heating area towards the cooling area. A working medium is contained in the artery meshes. The artery meshes are located between wick structures (15a, 15b) attached to a top cover (14) and a base plate (12) of the heat spreader, respectively, and contact therewith.
摘要:
A heat spreader includes a bottom wall (12) and a cover (14) hermetically connected to the bottom wall. Cooperatively the bottom wall and the cover define a space (11) therebetween for receiving a working fluid therein. A wick structure (15) is received in the space and thermally interconnects the bottom wall and the cover. The wick structure includes at least a carbon nanotube array, which can conduct heat from the bottom wall to the cover and draw condensed liquid of the working fluid from the cover toward the bottom wall.
摘要:
A light-emitting diode (LED) assembly includes a circuit board (10), at least one LED (20) being electrically connected with and being arranged on a side of the circuit board, and a heat dissipation apparatus (40) being arranged on an opposite side of the circuit board. The circuit board defines at least one through hole (102) corresponding to a position of the at least one LED. Thermal interface material (140) is filled in the at least one hole of the circuit board to thermally interconnect the at least one LED and the heat dissipation apparatus. The thermal interface material is a composition of nano-material and macromolecular material.
摘要:
A pulsating heat pipe (10) includes an elongate capillary tube (11), a working fluid (15) disposed within the elongate tube and an artery mesh (13) disposed in the elongate tube. The capillary tube includes a plurality of heat receiving portions (112) located on a first predetermined part of the elongate tube, and a plurality of heat radiating portions (114) located on a second predetermined part of the elongate tube. The heat receiving and heat radiating portions are alternatively disposed on the elongate tube. The working fluid is propelled to flow between the heat receiving and heat radiating portions via a first channel (132) defined in the artery mesh and a second channel (133) defined between the artery mesh and the elongate tube.
摘要:
A heat pipe (10) includes a casing (11) and a composite wick structure (14). The casing includes an evaporator section (15) and a condenser section (16). The wick structure includes a plurality of grooves (142, 143) and an artery mesh (145). The grooves at the evaporator section each have a smaller groove width and a smaller apex angle (A1) than those of each of the grooves at the condenser section. A method for manufacturing the heat pipe includes: providing a casing with a plurality of grooves axially defined therein; shrinking a diameter of one portion of the casing to obtain an evaporator section of the heat pipe; placing an artery mesh to contact with an inner wall of the casing; vacuuming the casing and placing a working fluid in the casing; sealing the casing to obtain the heat pipe.
摘要:
An LED lamp cooling apparatus (10) includes a substrate (11), a plurality of LEDs (13) electrically connected with the substrate, a heat sink (19) for dissipation of heat generated by the LEDs and a pulsating heat pipe (15) thermally connected with the heat sink. The pulsating heat pipe includes a plurality of heat receiving portions (154) and a plurality of heat radiating portions (155), and contains a working fluid (153) therein. The substrate is attached to the heat receiving portions of the pulsating heat pipe and the heat sink is attached to the heat radiating portions of the pulsating heat pipe. The heat generated by the LEDs is transferred from the heat receiving portions to the heat radiating portions of the pulsating heat pipe through pulsation or oscillation of the working fluid in the pulsating heat pipe.
摘要:
An exemplary heat pipe includes an elongated casing, a wick, an artery mesh, and working medium filled in the casing. The casing includes an evaporating section and a condensing section. The wick is disposed within an inner wall of the evaporating section of the casing. The artery mesh includes a large portion, and a small portion with an outer diameter smaller than that of the large portion. The small portion is located within and in direct physical contact with an inner surface of the wick. The large portion is in direct physical contact with an inner wall of the condensing section of the casing. The working medium saturates the wick and the artery mesh.
摘要:
A heat pipe includes an elongated casing (10), a wick (13), at least one artery mesh (12), and working medium filling in the casing. The casing has an evaporating section (101) and a condensing section (102). The wick is disposed on an inner wall of the evaporating section. The at least one artery mesh includes a large portion (121) and a small portion (122) with an outer diameter smaller than that of the large portion. The small portion is located within and contacts with the wick, and the large portion contacts with the inner wall of the condensing section of the casing. The working medium saturates the wick and the at least one artery mesh.
摘要:
A heat pipe (10) includes a casing (11), a plurality of grooves (12, 13) defined in the casing, and working fluid contained in the casing. The casing includes a first portion (14) and a second portion (15) having a smaller diameter than the first portion. The grooves (12) at the first portion of the casing have greater apex angles and smaller groove width than those of the grooves (13) at the second portion. A method for manufacturing the heat pipe includes the steps of: providing a casing with a plurality of grooves defined in an inner wall thereof; shrinking a diameter of one portion of the casing to enable the portion to function as an evaporator section of the heat pipe; vacuuming and placing a predetermined quantity of working fluid in the casing; sealing the casing to obtain the heat pipe.