摘要:
An exposure apparatus of this invention is used in an exposure process of semiconductor and LCD devices. The exposure apparatus includes a stage on which a semiconductor wafer is placed, a rotating mechanism for rotating the stage, a radiation unit arranged to oppose a support surface of the stage, a slider mechanism for reciprocating the radiation unit along a straight line passing through the center of the support surface of the stage, an exposure range input unit for inputting a desired exposure range of the wafer, an exposure range memory unit for storing the input exposure range, a CCD image sensor for detecting a reference position of the wafer, a relative position detector for detecting a relative position between the detected reference position and the radiation unit, a controller for controlling the sliding mechanism in correspondence with the relative position and the exposure range, and a light amount control mechanism for controlling an amount of light radiated from the irradiation mechanism to the wafer in correspondence with the relative position and the exposure range.
摘要:
A resist process apparatus of the invention serves to load/unload a semiconductor wafer in/from the respective process mechanisms. The apparatus includes a wafer holding member for holding a semiconductor wafer, and X, Y, Z and .theta. driving mechanisms for conveying the wafer holding member to a resist coating mechanism and the like. The wafer holding member includes a support frame which is larger than diameter of a semiconductor wafer, and a plurality of support members, arranged on the support frame, for supporting the semiconductor wafer in partial contact with the peripheral portion of the semiconductor wafer. Since the contact area between the support members and a semiconductor wafer is small, changes in temperature of the semiconductor, when it is held, are small.
摘要:
Disclosed is a coating apparatus for applying a resist or developing solution to a semiconductor wafer. This coating apparatus comprises a plurality of nozzles supplied with various resist from a resist source and each adapted to drip the different solution onto the wafer, a vessel in which the nozzles is kept on stand-by, while maintaining the liquids in a predetermined state in the vicinity of discharge port portions of the nozzles, when the nozzles need not be operated, and a nozzle operating mechanism for selecting one of the nozzles kept on stand-by in the vessel, and transporting the selected nozzle to the location of the wafer, whereby the resist is applied to the wafer by means of only the nozzle transported by the nozzle operating mechanism.
摘要:
Disclosed is a coating apparatus for applying a resist or developing solution to a semiconductor wafer. This coating apparatus comprises a plurality of nozzles supplied with various resist from a resist source and each adapted to drip the different solution onto the wafer, a vessel in which the nozzles is kept on stand-by, while maintaining the liquids in a predetermined state in the vicinity of discharge port portions of the nozzles, when the nozzles need not be operated, and a nozzle operating mechanism for selecting one of the nozzles kept on stand-by in the vessel, and transporting the selected nozzle to the location of the wafer, whereby the resist is applied to the wafer by means of only the nozzle transported by the nozzle operating mechanism.
摘要:
A coating and developing system includes an auxiliary block, a resist film forming unit block and antireflection film forming unit blocks stacked up in layers to form a resist film and an antireflection film underlying the resist film and an antireflection film overlying the resist film in a small space. The coating and developing system can cope with either a case where antireflection films are formed or a case where no antireflection film is formed. Film forming unit blocks, namely, a TCT layer, a COT layer and a BCT layer, and developing unit blocks, namely, DEV layers, are stacked up in layers in a processing block S2. The TCT layer, the COT layer and the BCT layer are used selectively in the case where antireflection films are formed and the case where any antireflection film is not formed. The coating and developing system is controlled by a carrying program.
摘要:
Provided is a coating and developing apparatus composed of an assembly of plural unit blocks. A first unit-block stack and a second unit-block stack are arranged at different positions with respect to front-and-rear direction. Unit blocks for development, each of which comprises plural processing units including a developing unit that performs developing process after exposure and a transfer device that transfers a substrate among the processing units, are arranged at the lowermost level. Unit blocks for application, or coating, each of which comprises plural processing units including a coating unit that performs application process before exposure and a transfer device that transfers a substrate among the processing units, are arranged above the unit blocks for development. Unit blocks for application are arranged in both the first and second unit-block stacks. Unit blocks for application which a wafer goes through are determined depending on the layering positional relationship between an antireflective film and a resist film. An exposed wafer goes only through the unit block for development without going through any one of the unit blocks for application.
摘要:
A coating and developing system includes a resist film forming unit block and antireflection film forming unit blocks stacked up in layers to form a resist film and an antireflection film underlying the resist film and an antireflection film overlying the resist film in a small space. The coating and developing system is capable of coping with either of a case where antireflection films are formed and a case where any antireflection film is not formed and needs simple software. Film forming unit blocks, namely, a TCT layer B3, a COT layer B4 and a BCT layer B5, and developing unit blocks, namely, DEV layers B1 and B2, are stacked up in layers in a processing block S2. The TCT layer B3, the COT layer B4 and the BCT layer B5 are used selectively in the case where antireflection films are formed and the case where any antireflection film is not formed. The coating and developing system is controlled by a simple carrying program and simple software.
摘要:
A coating and developing apparatus comprises a process block which forms a resist film on a wafer, then transfers the wafer to an exposure apparatus, and performs a developing process on the wafer after exposure, and an interface transfer mechanism provided between the process block and the exposure apparatus. The process block includes unit blocks for coating-film formation and unit blocks for development laid out in a stacked manner. When an abnormality occurs in the interface transfer mechanism, an ordinary process in the unit block for coating-film formation is performed on those substrates which are present in that unit block for coating-film formation, after which processed wafers are retreated to a retaining unit and transfer of any wafer into the unit block for coating-film formation is inhibited.
摘要:
A coating and developing system includes a resist film forming unit block and antireflection film forming unit blocks stacked in layers to form a resist film and an antireflection film underlying the resist film and an antireflection film overlying the resist film in a small space. The coating and developing system can cope with either of a case where antireflection films are formed and where any antireflection film is not formed. Film forming unit blocks: TCT layer B3, a COT layer B4 and a BCT layer B5, and developing unit blocks: DEV layers B1 and B2, are stacked up in layers in a processing block S2. The TCT layer B3, the COT layer B4 and the BCT layer B5 are used selectively where antireflection films are formed and any antireflection film is not formed. The coating and developing system is controlled by a carrying program and software.
摘要:
A coating/developing device includes a processing block having a plurality of coating unit blocks stacked and a developing unit block stacked on the coating unit blocks. Each of the unit blocks is provided with a liquid processing unit for coating a liquid chemical on a substrate, a heating unit for heating the substrate, a cooling unit for cooling the substrate and a transfer unit for transferring the substrate between the units. The liquid processing unit is provided with a coating unit for coating a resist liquid on the substrate, a first bottom antireflection coating (BARC) forming unit for coating a liquid chemical for a BARC on the substrate before the resist liquid is coated thereon, and a second BARC forming unit for coating a liquid chemical for the BARC on the substrate after the resist liquid is coated thereon.