摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
摘要:
A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
摘要:
A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A method for fabricating an anode-shorted field stop insulated gate bipolar transistor (IGBT) comprises selectively forming first and second semiconductor implant regions of opposite conductivity types. A field stop layer of a second conductivity type can be grown onto or implanted into the substrate. An epitaxial layer can be grown on the substrate or on the field stop layer. One or more insulated gate bipolar transistors (IGBT) component cells are formed within the epitaxial layer.
摘要:
A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
摘要:
A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
摘要:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area the edge termination area wherein the edge termination area comprises a superjunction structure having doped semiconductor columns of alternating conductivity types with a charge imbalance between the doped semiconductor columns to generate a saddle junction electric field in the edge termination.