摘要:
A phase change memory device with a memory element including a basis phase change material, such as a chalcogenide, and one or more additives, where the additive or additives have a non-constant concentration profile along an inter-electrode current path through a memory element. The use of “non-constant” concentration profiles for additives enables doping the different zones with different materials and concentrations, according to the different crystallographic, thermal and electrical conditions, and different phase transition conditions.
摘要:
A phase change memory device with a memory element including a basis phase change material, such as a chalcogenide, and one or more additives, where the additive or additives have a non-constant concentration profile along an inter-electrode current path through a memory element. The use of “non-constant” concentration profiles for additives enables doping the different zones with different materials and concentrations, according to the different crystallographic, thermal and electrical conditions, and different phase transition conditions.
摘要:
A layer of phase change material with silicon or another semiconductor, or a silicon-based or other semiconductor-based additive, is formed using a composite sputter target including the silicon or other semiconductor, and the phase change material. The concentration of silicon or other semiconductor is more than five times greater than the specified concentration of silicon or other semiconductor in the layer being formed. For silicon-based additive in GST-type phase change materials, sputter target may comprise more than 40 at % silicon. Silicon-based or other semiconductor-based additives can be formed using the composite sputter target with a flow of reactive gases, such as oxygen or nitrogen, in the sputter chamber during the deposition.
摘要:
A layer of phase change material with silicon or another semiconductor, or a silicon-based or other semiconductor-based additive, is formed using a composite sputter target including the silicon or other semiconductor, and the phase change material. The concentration of silicon or other semiconductor is more than five times greater than the specified concentration of silicon or other semiconductor in the layer being formed. For silicon-based additive in GST-type phase change materials, sputter target may comprise more than 40 at % silicon. Silicon-based or other semiconductor-based additives can be formed using the composite sputter target with a flow of reactive gases, such as oxygen or nitrogen, in the sputter chamber during the deposition.
摘要:
A method for manufacturing a memory device, and a resulting device, is described using silicon oxide doped chalcogenide material. A first electrode having a contact surface; a body of phase change memory material in a polycrystalline state including a portion in contact with the contact surface of the first electrode, and a second electrode in contact with the body of phase change material are formed. The process includes melting and cooling the phase change memory material one or more times within an active region in the body of phase change material without disturbing the polycrystalline state outside the active region. A mesh of silicon oxide in the active region with at least one domain of chalcogenide material results. Also, the grain size of the phase change material in the polycrystalline state outside the active region is small, resulting in a more uniform structure.
摘要:
A phase change memory cell with a single element phase change thin film layer; and a first electrode and a second electrode coupled to the single element phase change thin film layer. A current flows from the first electrode to the single element phase change thin film layer, and through to the second electrode. The single element phase change thin film layer includes a single element phase change material. The single element phase change thin film layer can be less than 5 nanometers thick. The temperature of crystallization of the single element phase change material can be controlled by its thickness. In one embodiment, the single element phase change thin film layer is configured to be amorphous at room temperature (25 degrees Celsius). In one embodiment, the single element phase change thin film layer is comprised of Antimony (Sb).
摘要:
A phase change memory cell with a single element phase change thin film layer; and a first electrode and a second electrode coupled to the single element phase change thin film layer. A current flows from the first electrode to the single element phase change thin film layer, and through to the second electrode. The single element phase change thin film layer includes a single element phase change material. The single element phase change thin film layer can be less than 5 nanometers thick. The temperature of crystallization of the single element phase change material can be controlled by its thickness. In one embodiment, the single element phase change thin film layer is configured to be amorphous at room temperature (25 degrees Celsius). In one embodiment, the single element phase change thin film layer is comprised of Antimony (Sb).
摘要:
A layer of nanoparticles having a dimension on the order of 10 nm is employed to form a current constricting layer or as a hardmask for forming a current constricting layer from an underlying insulator layer. The nanoparticles are preferably self-aligning and/or self-planarizing on the underlying surface. The current constricting layer may be formed within a bottom conductive plate, within a phase change material layer, within a top conductive plate, or within a tapered liner between a tapered via sidewall and a via plug contains either a phase change material or a top conductive material. The current density of the local structure around the current constricting layer is higher than the surrounding area, thus allowing local temperature to rise higher than surrounding material. The total current required to program the phase change memory device, and consequently the size of a programming transistor, is reduced due to the current constricting layer.
摘要:
A memory cell comprises a first electrode, a second electrode and a composite material. The composite material electrically couples the first electrode to the second electrode. Moreover, the composite material comprises a phase change material and a resistor material. At least a portion of the phase change material is operative to switch between a substantially crystalline phase and a substantially amorphous phase in response to an application of a switching signal to at least one of the first and second electrodes. In addition, the resistor material has a resistivity lower than that of the phase change material when the phase change material is in the substantially amorphous phase.
摘要:
Memory devices are described herein along with method for operating the memory device. A memory cell as described herein includes a first electrode and a second electrode. The memory cell also comprises phase change material having first and second active regions arranged in series along an inter-electrode current path between the first and second electrode.