摘要:
Various aspects of the technology are directed to integrated circuit manufacturing methods and integrated circuits. In one method, a first charge type buried layer in a semiconductor material of an integrated circuit by implanting first charge type dopants of the first charge type buried layer through a sacrificial oxide over the semiconductor material and through an intermediate region of the semiconductor material transited by the implanted first charge type dopants. When the implanted dopants pass through the sacrificial oxide, damage to the semiconductor crystalline lattice is averted. If the sacrificial oxide were absent, the implanted dopants would have passed through and damaged the semiconductor crystalline lattice instead. Later, a pre-anneal oxide is grown and removed.
摘要:
Various aspects of the technology are directed to integrated circuit manufacturing methods and integrated circuits. In one method, a first charge type buried layer in a semiconductor material of an integrated circuit by implanting first charge type dopants of the first charge type buried layer through a sacrificial oxide over the semiconductor material and through an intermediate region of the semiconductor material transited by the implanted first charge type dopants. When the implanted dopants pass through the sacrificial oxide, damage to the semiconductor crystalline lattice is averted. If the sacrificial oxide were absent, the implanted dopants would have passed through and damaged the semiconductor crystalline lattice instead. Later, a pre-anneal oxide is grown and removed.
摘要:
Various aspects of the technology are directed to integrated circuit manufacturing methods and integrated circuits. In one method, a first charge type buried layer in a semiconductor material of an integrated circuit by implanting first charge type dopants of the first charge type buried layer through a sacrificial oxide over the semiconductor material and through an intermediate region of the semiconductor material transited by the implanted first charge type dopants. When the implanted dopants pass through the sacrificial oxide, damage to the semiconductor crystalline lattice is averted. If the sacrificial oxide were absent, the implanted dopants would have passed through and damaged the semiconductor crystalline lattice instead. Later, a pre-anneal oxide is grown and removed.
摘要:
Various aspects of the technology are directed to integrated circuit manufacturing methods and integrated circuits. In one method, a first charge type buried layer in a semiconductor material of an integrated circuit by implanting first charge type dopants of the first charge type buried layer through a sacrificial oxide over the semiconductor material and through an intermediate region of the semiconductor material transited by the implanted first charge type dopants. When the implanted dopants pass through the sacrificial oxide, damage to the semiconductor crystalline lattice is averted. If the sacrificial oxide were absent, the implanted dopants would have passed through and damaged the semiconductor crystalline lattice instead. Later, a pre-anneal oxide is grown and removed.
摘要:
An LDPMOS structure having enhanced breakdown voltage and specific on-resistance is described, as is a method for fabricating the structure. A P-field implanted layer formed in a drift region of the structure and surrounding a lightly doped drain region effectively increases breakdown voltage while maintaining a relatively low specific on-resistance.
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a bulk, a gate, a source, a drain and a bulk contact region. The gate is on the bulk. The source and the drain are in the bulk on opposing sides of the gate respectively. The bulk contact region is only in a region of the bulk adjacent to the source. The bulk contact region is electrically connected to the bulk.
摘要:
An LDPMOS structure having enhanced breakdown voltage and specific on-resistance is described, as is a method for fabricating the structure. A P-field implanted layer formed in a drift region of the structure and surrounding a lightly doped drain region effectively increases breakdown voltage while maintaining a relatively low specific on-resistance.
摘要:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a bulk, a gate, a source, a drain and a bulk contact region. The gate is on the bulk. The source and the drain are in the bulk on opposing sides of the gate respectively. The bulk contact region is only in a region of the bulk adjacent to the source. The bulk contact region is electrically connected to the bulk.
摘要:
LDMOS devices having a single-strip contact pad in the source region, and related methods of manufacturing are disclosed. The LDMOS may comprise a first well lightly doped with a first dopant and formed into a portion of a substrate, the first well having a drain region at its surface heavily doped with the first dopant, and a second well lightly doped with a second dopant formed in another portion of the substrate, the second well having a source region at its surface comprising first portions heavily doped with the first dopant directly adjacent second portions heavily doped with the second dopant. Also, the LDMOS device may comprise a field oxide at the upper surface of the substrate between the source and drain regions, and contacting the first well but separated from the second well, and a gate formed partially over the field oxide and partially over the source region. The LDMOS may also comprise contact pads in contact with the gate, and source and drain regions, wherein the contact pad in contact with the source regions comprises a single-strip of conductive material extending across the source region.
摘要:
A semiconductor device for a high voltage application includes a doped source base region, an N+ source region, a P+ source region and a gate structure. The doped source base region has P-type. The N+ source region extends downwards into the doped source base region. The P+ source region is close to the N+ source region, extends downwards into the doped source base region, and is doped heavier than the doped source base region. The gate structure is coupled to the N+ source region and is near to the P+ source region.
摘要翻译:用于高电压应用的半导体器件包括掺杂源极基极区域,N +源极区域,P +源极区域和栅极结构。 掺杂源极区具有P型。 N +源极区域向下延伸到掺杂源极基极区域中。 P +源极区域靠近N +源极区域,向下延伸到掺杂源极区域中,并且掺杂得比掺杂源极区域重。 栅极结构耦合到N +源极区并且靠近P +源极区。