摘要:
The segregation in the hydrogen-absorbing alloy is decreased by a centrifugal casting which is devised in the present invention so that: a melt fed to the bottom portion of a cylindrical rotary mold solidifies during one rotation of the mold; and, the average depositing speed of melt is from approximately 0.005 to 0.1 cm/second.
摘要:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic αFe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
摘要:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic αFe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
摘要:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic &agr;Fe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
摘要:
An alloy used for the production of a rare-earth magnet alloy, particularly the boundary-phase alloy in the two-alloy method is provided to improve the crushability.The alloy consists of (a) from 35 to 60% of Nd, Dy and/or Pr, 1% or less of B, and the balance being Fe, or (b) from 35 to 60% of Nd, Dy and/or Pr, 1% or less of B, and at least one element selected from the group consisting of 35% by weight or less of Co, 4% by weight or less of Cu, 3% by weight or less of Al and 3% by weight or less of Ga, and the balance being Fe. The total volume fraction of R.sub.2 Fe.sub.17 and R.sub.2 Fe.sub.14 B phases (Fe may be replaced with Cu, Co, Al or Ga) is 25% or more in the alloy. The average size of each of the R.sub.2 Fe.sub.17 and R.sub.2 Fe.sub.14 B phases is 20 .mu.m or less. The alloy can be produced by a centrifugal casting at an average accumulating rate of melt at 0.1 cm/second or less.
摘要:
The magnetic properties of rare earth magnet are improved by means of forming a novel structure of the cast alloy used for the production of a rare earth magnet, which contains from 27 to 34% by weight of at least one rare earth element (R) including yttrium, from 0.7 to 1.4% by weight of boron, and the balance being essentially iron and, occasionally any other transition element, and comprises an R.sub.2 T.sub.14 B phase, an R-rich phase and optionally at least one ternary phase except for the R.sub.2 T.sub.14 B phase and the R-rich phase. The novel structure is that the volume fraction (V) in percentage of said R.sub.2 T.sub.14 B phase and said at least one ternary phase is more than 138-1.6r (with the proviso that r is the content of R), the average grain size of the R.sub.2 T.sub.14 B phases is from 10 to 100 .mu.m and, further, the average spacing between the adjacent R-rich phases is from 3 to 15 .mu.m. The novel structure can be formed by by means of feeding alloy melt onto a rotary casting roll, cooling in a temperature range of from melting point to 1000.degree. C. at a cooling rate of 300.degree. C. per second or more, and further cooling in a temperature range of from 800 to 600.degree. C. at a cooling rate of 1.degree. C./second or less.
摘要:
An alloy used for the production of a rare-earth magnet alloy, particularly the boundary-phase alloy in the two-alloy method is provided to improve the crushability. The Alloy consists of (a) from 35 to 60% of Nd, Dy and/or Pr, and the balance being Fe, or (b) from 35 to 60% of Nd, Dy and/or Pr, and at least one element selected from the group consisting of 35% by weight or less of Co, 4% by weight or less of Cu, 3% by weight or less of Al and 3% by weight or less of Ga, and the balance being Fe. The volume fraction of R2Fe17 phase (Fe may be replaced with Cu, Co, Al or Ga) is 25% or more in the alloy and the average size of an R2Fe17 phase is 20 &mgr;m or less. The alloy can be produced by a centrifugal casting at an average accumulating rate of melt at 0.1 cm/second or less.
摘要:
An alloy used for the production of a rare-earth magnet alloy, particularly the boundary-phase alloy in the two-alloy method is provided to improve the crushability.The Alloy consists of (a) from 35 to 60% of Nd, Dy and/or Pr, and the balance being Fe, or (b) from 35 to 60% of Nd, Dy and/or Pr, and at least one element selected from the group consisting of 35% by weight or less of Co, 4% by weight or less of Cu, 3% by weight or less of Al and 3% by weight or less of Ga, and the balance being Fe. The volume fraction of R.sub.2 Fe.sub.17 phase (Fe may be replaced with Cu, Co, Al or Ga) is 25% or more in the alloy and the average size of an R.sub.2 Fe.sub.17 phase is 20 .mu.m or less. The alloy can be produced by a centrifugal casting at an average accumulating rate of melt at 0.1 cm/second or less.
摘要:
The magnetic properties of rare earth magnet are improved by means of forming a novel structure of the cast alloy used for the production of a rare earth magnet, which contains from 27 to 34% by weight of at least one rare earth element (R) including yttrium, from 07 to 1.4% by weight of boron, and the balance being essentially iron and, occasionally any other transition element, and comprises an R.sub.2 T.sub.14 B phase, an R-rich phase and optionally at least one ternary phase except for the R.sub.2 T.sub.14 B phase and the R-rich phase. The novel structure is that the volume fraction (V) in percentage of said R.sub.2 T.sub.14 B phase and said at least one ternary phase is more than 138-1.6r (with the proviso that r is the content of R), the average grain size of the R.sub.2 T.sub.14 B phases is from 10 to 100 .mu.m and, further, the average spacing between the adjacent R-rich phases is from 3 to 15 .mu.m. The novel structure can be formed by by means of feeding alloy melt onto a rotary casting roll, cooling in a temperature range of from melting point to 1000.degree. C. at a cooling rate of 300.degree. C. per second or more, and further cooling in a temperature range of from 800 to 600.degree. C. at a cooling rate of 1.degree. C./second or less.
摘要:
Rare-earth alloy is cast into a sheet (6) or the like by using a tundish (3, 13). The refractory material of the tundish used for casting does not necessitate preheating for improving the flowability of the melt (2). The refractory material used essentially consists of 70 wt % or more of Al2O3 and 30 wt % or less of SiO2, or 70 wt % or more of ZrO2 and 30 wt % or less of one or more of Y2O3, Ce2O3, CaO, MgO, Al2O3, TiO2 and SiO2. The refractory material has 1 g/cm3 or less of bulk density, has 0.5 kcal/(mh° C.) or less of thermal conductivity in the temperature range of from 1200 to 1400° C., and has 0.5 wt % or less of ratio of ignition weight-loss under the heating condition of 1400° C. for 1 hour.
摘要翻译:通过使用中间包(3,13)将稀土合金铸造成板(6)等。 用于铸造的中间包的耐火材料不需要预热以改善熔体(2)的流动性。 使用的耐火材料基本上由70重量%以上的Al 2 O 3 3和30重量%以下的SiO 2或70 重量%以上的ZrO 2 2和30重量%以下的Y 2 O 3,Ce 2, CaO,MgO,Al 2 O 3,TiO 2和SiO 2, 2 SUB>。 耐火材料具有1g / cm 3或更小的堆积密度,在1200至1400℃的温度范围内具有0.5kcal /(mh℃)或更低的热导率, 并且在1400℃的加热条件下具有0.5重量%以下的点火失重比率1小时。