摘要:
Apparatuses and methods for transmission and reception in a Closed-Loop (CL)-Multiple Input Multiple Output (MIMO) system are provided. A codebook generation method includes determining weight vectors vi (i=1, . . . , 2L) for a codebook V(4, 1, L), where Nt of a codebook V(Nt, s, L) denotes a number of antennas, s denotes a number of streams, and L denotes a number of codebook index bits, determining a unitary matrix Ti using an i-th vector vi of the codebook V(4, 1, L), and determining an i-th matrix of the codebook V(4, 2, L) by selecting a first column of the unitary matrix Ti as a first column of a weight matrix and selecting a column selected from other columns excluding the first column of the unitary matrix Ti in a particular pattern, as a second column of the weight matrix.
摘要:
An apparatus and a method segment an allocated resource in data transmission in a wireless communication system. When a size of transmission data is large, the data information bit is distributed to one or more forward error correction (FEC) blocks with consideration of a size of the data information bit. A number of data tones is determined based on control information with respect to each of the one or more FEC blocks. The data information bit distributed to the one or more FEC blocks is mapped into a data tone with consideration of the number of data tones determined for each of the one or more FEC blocks.
摘要:
An apparatus and a method segment an allocated resource in data transmission in a wireless communication system. When a size of transmission data is large, the data information bit is distributed to one or more forward error correction (FEC) blocks with consideration of a size of the data information bit. A number of data tones is determined based on control information with respect to each of the one or more FEC blocks. The data information bit distributed to the one or more FEC blocks is mapped into a data tone with consideration of the number of data tones determined for each of the one or more FEC blocks.
摘要:
Disclosed is a method and apparatus for efficiently controlling buffers which support a Hybrid Automatic Repeat Request (HARQ) in a wireless communication system. Buffer regions for the HARQ scheme are not fixedly allocated according to channel identification information, but are allocated from the viewpoint of one overall memory through aggregation support. That is, an HARQ buffer is dynamically controlled. Therefore, there are the effects reducing the size of the entire chip, as well as reducing power consumption of the entire system according to the reduction of the chip size.
摘要:
A method and apparatus for processing time windowing to transmit a signal in a Broadband Wireless Access (BWA) communication system based on Orthogonal Frequency Division Multiple Access (OFDMA). A signal of a first interval included in a previous symbol prior to a current symbol is stored as a signal of a previous symbol interval. The current symbol includes a guard interval and an effective symbol interval subsequent to the guard interval. The current symbol is windowed by overlapping the stored signal of the first interval with a signal of a second interval included in the current symbol subsequent to the previous symbol. A windowed signal is transmitted.
摘要:
A method and HARQ memory apparatus in a BWA communication system are provided where the HARQ memory apparatus includes a memory configured to partition the entire memory area in units of slots corresponding to the size of a concatenation block, to input/output a plurality of channel data to the slot in units of the concatenation block, to store a new concatenation block in an empty slot, and to combine a retransmitted concatenation block with a prestored concatenation block and store the combined concatenation block at a prestored location. Accordingly, the required amount of memory can be reduced by using a buffer efficiently. In particular, when a memory is embedded in an integrated circuit, the size and power consumption of the integrated circuit can be reduced.
摘要:
A method and an apparatus for providing preamble information in a wireless communication system are provided. The method of a Base Station (BS) of a first system for providing neighbor BS information of a second system in a communication environment covering the first system and the second system together includes generating a message comprising information indicating a superframe boundary of a neighbor BS of the second system, and transmitting the message comprising the information indicating the superframe boundary to a Mobile Station (MS).
摘要:
When a subscriber station (SS) encounters interference caused an interfering base station (BS), the interference can be mitigated regardless of whether the interfering base station is a CSG-Closed BS or whether the SS is connected to a serving BS. If the SS is not connected to a serving BS and cannot access the interfering BS, the SS will signal the interfering BS directly to request the interfering BS to perform IM. If the SS is a legal user, and conditions to initiate IM are met, the interfering BS will perform IM until conditions to terminate IM are met. If the SS is connected to a serving BS, the serving BS will request the interfering BS to perform or terminate interference mitigation (IM) on behalf of the SS if certain conditions are satisfied.
摘要:
An apparatus and a method for transmitting control information in a small base station of a wireless communication system are provided. In the method, when the small base station operates in a Low Duty operation Mode (LDM) in a superframe, a control signal including LDM operation information is generated. Only a subframe via which a preamble, a control signal including the LDM operation information, and a SuperFrame Header (SFH) are transmitted is transmitted during the superframe. When the small base station operates in a normal operation mode in a superframe, at least one of the control information and data is transmitted via at least one subframe of the superframe.
摘要:
When a subscriber station (SS) encounters interference caused an interfering base station (BS), the interference can be mitigated regardless of whether the interfering base station is a CSG-Closed BS or whether the SS is connected to a serving BS. If the SS is not connected to a serving BS and cannot access the interfering BS, the SS will signal the interfering BS directly to request the interfering BS to perform IM. If the SS is a legal user, and conditions to initiate IM are met, the interfering BS will perform IM until conditions to terminate IM are met. If the SS is connected to a serving BS, the serving BS will request the interfering BS to perform or terminate interference mitigation (IM) on behalf of the SS if certain conditions are satisfied.