摘要:
Provided are a doped phase change material and a phase change memory device including the phase change material. The phase change material, which may be doped with Se, has a higher crystallization temperature than a Ge2Sb2Te5 (GST) material. The phase change material may be InXSbYTeZSe100−(X+Y+Z). The index X of indium (In) is in the range of 25 wt %≦X≦60 wt %. The index Y of antimony (Sb) is in the range of 1 wt %≦Y≦17 wt %. The index Z of tellurium (Te) is in the range of 0 wt %
摘要翻译:提供了掺杂相变材料和包括相变材料的相变存储器件。 可以掺杂有Se的相变材料具有比Ge 2 Sb 2 Sb 5(GST)材料更高的结晶温度 。 相变材料可以是在<! - SIPO - >中,Z 100,(X + Y + Z) 。 铟(In)的指数X在25重量%<= X <= 60重量%的范围内。 锑(Sb)的指数Y在1重量%<= Y <17重量%的范围内。 碲(Te)的指数Z在0重量%
摘要:
Provided are a doped phase change material and a phase change memory device including the phase change material. The phase change material, which may be doped with Se, has a higher crystallization temperature than a Ge2Sb2Te5 (GST) material. The phase change material may be InXSbYTeZSe100−(X+Y+Z). The index X of indium (In) is in the range of 25 wt %≦X≦60 wt %. The index Y of antimony (Sb) is in the range of 1 wt %≦Y≦17 wt %. The index Z of tellurium (Te) is in the range of 0 wt %
摘要:
A phase change material layer includes antimony (Sb) and at least one of indium (In) and gallium (Ga). A phase change memory device includes a storage node including a phase change material layer and a switching device connected to the storage node. The phase change material layer includes Sb and at least one of In and Ga.
摘要:
A storage node may include a bottom electrode contact layer, a phase change layer connected to the bottom electrode contact layer, and a top electrode layer connected to the phase change layer. The bottom electrode contact layer may protrude toward the phase change layer. A phase change memory device may include a switching device and the storage node. The switching device may be connected to the bottom electrode contact layer. A method of manufacturing the storage node may include forming a via hole in an insulating interlayer, at least partially filling the via hole to form a bottom electrode contact layer, protruding the bottom electrode contact layer from the via hole, and forming a phase change layer that covers the bottom electrode contact layer. A method of manufacturing a phase change memory device may include forming the switching device on a substrate and manufacturing the storage node.
摘要:
A storage node may include a bottom electrode contact layer, a phase change layer connected to the bottom electrode contact layer, and a top electrode layer connected to the phase change layer. The bottom electrode contact layer may protrude toward the phase change layer. A phase change memory device may include a switching device and the storage node. The switching device may be connected to the bottom electrode contact layer. A method of manufacturing the storage node may include forming a via hole in an insulating interlayer, at least partially filling the via hole to form a bottom electrode contact layer, protruding the bottom electrode contact layer from the via hole, and forming a phase change layer that covers the bottom electrode contact layer. A method of manufacturing a phase change memory device may include forming the switching device on a substrate and manufacturing the storage node.
摘要:
A phase change material layer includes antimony (Sb) and at least one of indium (In) and gallium (Ga). A phase change memory device includes a storage node including a phase change material layer and a switching device connected to the storage node. The phase change material layer includes Sb and at least one of In and Ga.
摘要:
Example embodiments may provide a doped phase change layer and a method of operating and fabricating a phase change memory with the example embodiment doped phase change layer. The phase change memory may include a storage node having a phase change layer and a switching device, wherein the phase change layer includes indium with a concentration ranging from about 5 at % to about 15 at %. The phase change layer may be a GST layer that includes indium. The phase change layer may be a GST layer that includes gallium.
摘要:
Provided are phase change random access memory (PRAM) devices and methods of operating the same. The PRAM device may include a switching device, a lower electrode, a lower electrode contact layer, a phase change layer and/or an upper electrode. The lower electrode may be connected to a switching device. The lower electrode contact layer may be formed on the lower electrode. The phase change layer, which may include a bottom surface that contacts an upper surface of the lower electrode contact layer, may be formed on the lower electrode contact layer. The upper electrode may be formed on the phase change layer. The lower electrode contact layer may be formed of a material layer having an absolute value of a Seebeck coefficient higher than TiAlN. The Seebeck coefficient of the lower electrode contact layer may be negative. The material layer may have lower heat conductivity and/or approximately equivalent electrical resistance as TiAlN.
摘要:
Provided is a method of operating a phase change random access memory comprising a switching device and a storage node comprising a phase change layer. The method includes applying a reset current passing through the phase change layer from a lower portion of the phase change layer toward an upper portion of the phase change layer and being smaller than 1.6 mA to the storage node to change a portion of the phase change layer into an amorphous state. The set voltage is in an opposite direction is exemplary embodiments, and a connector is of small cross-sectional area.
摘要:
Insulating impurities may be uniformly distributed over an entire or partial region of the phase change material. The PRAM may include a phase change layer including the phase change material. The insulating impurity content of the phase change material may be 0.1 to 10% (inclusive) the volume of the phase change material. The insulating impurity content of the phase change material may be adjusted by controlling the power applied to a target including the insulating impurities.