摘要:
A liquid crystal parallax barrier panel has the structure formed by stacking an electrode substrate, a liquid crystal layer and a sealing substrate in order. The electrode substrate includes a glass substrate, a first electrode which is branched in plural stages, a second electrode which is arranged on the same layer as the first electrode and is branched in plural stages, and an alignment film. Out of the first electrode and the second electrode, twig portions which include distal ends of branched portions of one electrode and twig portions which include distal ends of branched portions of another electrode are alternately arranged such that the twig portion which includes the distal end of the branched portion of one electrode enters between two twig portions which include the distal ends of branched portions of another electrode. In a state where slits are not formed in a parallax barrier, the first electrode and the second electrode have the same voltage, while the slits are formed in the parallax barrier when a predetermined voltage is applied to the first electrode.
摘要:
A display device having a photosensor which exhibits excellent photoelectric conversion efficiency is provided. In a display device which forms photosensors on a substrate thereof, the photosensor is formed by sequentially stacking a gate electrode, a gate insulation film and a semiconductor layer in such an order or in an opposite order from a substrate side, and electrodes are connected to both sides of the semiconductor layer respectively, the semiconductor layer is formed of a stacked body consisting of a crystalline semiconductor layer and an amorphous semiconductor layer, and the crystalline semiconductor layer is arranged on the gate insulation film side.
摘要:
A display device having a photosensor which exhibits excellent photoelectric conversion efficiency is provided. In a display device which forms photosensors on a substrate thereof, the photosensor is formed by sequentially stacking a gate electrode, a gate insulation film and a semiconductor layer in such an order or in an opposite order from a substrate side, and electrodes are connected to both sides of the semiconductor layer respectively, the semiconductor layer is formed of a stacked body consisting of a crystalline semiconductor layer and an amorphous semiconductor layer, and the crystalline semiconductor layer is arranged on the gate insulation film side.
摘要:
A display device in which gate drive circuits are formed at both sides of an effective screen, and a static charge shield conductive film is formed to cover the gate drive circuits. In the manufacturing step and after producing the display device, the constant voltage is applied to the static charge shield conductive film via the common pad, the earth connection line and the like.
摘要:
In a display device which includes: an insulation substrate; thin film transistors which are formed on the insulation substrate; and terminal portions which are configured to supply voltages to the thin film transistors, the thin film transistor includes a gate electrode and a gate line which is formed of a material equal to a material of the gate electrode, a metal line is connected to the terminal portion, a first insulation film and a second insulation film which is made of a material different from a material of the first insulation film are sequentially stacked on the gate line, an opening which exposes the gate line is formed in the first insulation film and the second insulation film, a side wall surface of the opening is sequentially covered with a protective film, a first transparent conductive film and a third insulation film, the first transparent conductive film and a second transparent conductive film are sequentially stacked on an exposed portion of the gate line, and the second transparent conductive film is connected with the metal line.
摘要:
In order to prevent dielectric breakdown of TFT or an interlayer insulating film by static electricity with a reduced area at low cost, a liquid crystal display device has a configuration in which an interlayer insulating film and an a-Si film are formed in a display area and a control area inside terminals. Image signal lines and scan lines are insulated from each other through the interlayer insulating film and a-Si film in their intersections. On the other hand, only the interlayer insulating film is formed between static electricity protection lines and an earth line outside the terminals. When static electricity is induced, dielectric breakdown is caused to occur in the area outside the terminals. Thus, the display area and the control area are protected from the static electricity.
摘要:
A liquid crystal display device includes a semiconductor layer which is formed of a poly-Si layer and an a-Si layer and formed above a gate electrode with a gate insulating film interposed therebetween. A source electrode or a drain electrode is formed above the semiconductor layer. An n+Si layer is formed between the source electrode or the drain electrode and the semiconductor layer. Since ends of the source electrode or the drain electrode are formed inside ends of the semiconductor layer, leak current at the ends of the semiconductor layer can be reduced.
摘要:
In order to prevent dielectric breakdown of TFT or an interlayer insulating film by static electricity with a reduced area at low cost, a liquid crystal display device has a configuration in which an interlayer insulating film and an a-Si film are formed in a display area and a control area inside terminals. Image signal lines and scan lines are insulated from each other through the interlayer insulating film and a-Si film in their intersections. On the other hand, only the interlayer insulating film is formed between static electricity protection lines and an earth line outside the terminals. When static electricity is induced, dielectric breakdown is caused to occur in the area outside the terminals. Thus, the display area and the control area are protected from the static electricity.
摘要:
A liquid crystal display device includes a semiconductor layer which is formed of a poly-Si layer and an a-Si layer and formed above a gate electrode with a gate insulating film interposed therebetween. A source electrode or a drain electrode is formed above the semiconductor layer. An n+Si layer is formed between the source electrode or the drain electrode and the semiconductor layer. Since ends of the source electrode or the drain electrode are formed inside ends of the semiconductor layer, leak current at the ends of the semiconductor layer can be reduced.