摘要:
A radiation detecting apparatus includes a substrate 1, a scintillator layer 7 converting a radiation into light, and scintillator protection members 8, 9 and 10 to cover the scintillator layer 7, wherein the scintillator protection member includes a scintillator protection layer 8 consisting of a hot-melt resin, and the scintillator protection layer 8 touches the scintillator layer 7. As the substrate 1, there is provided a sensor panel including a photoreceiving layer 15 on which photoelectric conversion elements 2, receiving light, are arranged in a two-dimension array, and a protection layer 5 provided on the photoreceiving layer 15 and touching the scintillator layer 7 and the scintillator protection layer 8. By using such a scintillator protection layer, a film formation time of the scintillator protection layer can be shortened, and the film thickness dispersion of the scintillator protection layer can be suppressed. Moreover, the adhesion property to the scintillator foundation layer and to the reflective layer protection layer can be improved.
摘要:
A radiation detecting apparatus includes a substrate 1, a scintillator layer 7 converting a radiation into light, and scintillator protection members 8, 9 and 10 to cover the scintillator layer 7, wherein the scintillator protection member includes a scintillator protection layer 8 consisting of a hot-melt resin, and the scintillator protection layer 8 touches the scintillator layer 7. As the substrate 1, a sensor panel including a photoreceiving layer 15 on which photoelectric conversion elements 2, receiving light, are arranged in two-dimension, and a protection layer 5 provided on the photreceiving layer 15 and touching the scintillator layer 7 and the scintillator protection layer 8. By using such a scintillator protection layer, a film formation time of the scintillator protection layer can be shortened, and the film thickness dispersion of the scintillator protection layer can be suppressed. Moreover, the adhesion property to the scintillator foundation layer and to the reflective layer protection layer can be improved.
摘要:
In a radiation detecting device having a sensor panel in which a plurality of photoelectric conversion elements are formed on one surface of a support substrate, a moisture-proof protective layer is laminated on a surface of the sensor panel on which the photoelectric conversion elements are formed, and a warp correction layer is laminated on the other surface of the sensor panel, and the moisture-proof protective layer and the warp correction layer are formed of a resin film having a drawing or extrusion direction, respectively, and bonded together so as to make the drawing or extrusion directions of both the resin films similar to each other. With the formation of the radiation detecting device, the warp of the radiation detection panel induced by a thermal displacement is prevented.
摘要:
In a radiation detection device in which light that is generated at a phosphor layer based on absorbed radiation, the phosphor layer being constituted by connecting side faces of columnar phosphors to each other, is converted into an electric charge at a photoelectric conversion element portion and radiation is detected based on the electric charge, the phosphors have larger column diameters in peripheral regions of the phosphor layer than in a central region thereof. Further, the phosphor layer has a film thickness that is smaller in its peripheral regions than in a central region thereof, thereby preventing breakage of the phosphors.
摘要:
In a radiation detection device in which light that is generated at a phosphor layer based on absorbed radiation, the phosphor layer being constituted by connecting side faces of columnar phosphors to each other, is converted into an electric charge at a photoelectric conversion element portion and radiation is detected based on the electric charge, the phosphors have larger column diameters in peripheral regions of the phosphor layer than in a central region thereof. Further, the phosphor layer has a film thickness that is smaller in its peripheral regions than in a central region thereof, thereby preventing breakage of the phosphors.
摘要:
In a radiation detection device in which light that is generated at a phosphor layer based on absorbed radiation, the phosphor layer being constituted by connecting side faces of columnar phosphors to each other, is converted into an electric charge at a photoelectric conversion element portion and radiation is detected based on the electric charge, the phosphors have larger column diameters in peripheral regions of the phosphor layer than in a central region thereof. Further, the phosphor layer has a film thickness that is smaller in its peripheral regions than in a central region thereof, thereby preventing breakage of the phosphors.
摘要:
In a radiation detection device in which light that is generated at a phosphor layer based on absorbed radiation, the phosphor layer being constituted by connecting side faces of columnar phosphors to each other, is converted into an electric charge at a photoelectric conversion element portion and radiation is detected based on the electric charge, the phosphors have larger column diameters in peripheral regions of the phosphor layer than in a central region thereof. Further, the phosphor layer has a film thickness that is smaller in its peripheral regions than in a central region thereof, thereby preventing breakage of the phosphors.
摘要:
A scintillator panel having a wavelength conversion member has some problems: lowered durability to be caused by an area not covered with a protective layer around a projection formed on the wavelength conversion member surface; lowered resolution response and CTF caused by an irregularity of the film thicknesses of wavelength conversion members and a variation in gaps between wavelength conversion members and sensor panels; and breakage of the sensor panel by projections when a radiation detector is formed by bonding the scintillator panel and sensor panel. At least one of these problems can be solved by a scintillator panel having projections on the wavelength conversion member surface whose sizes are reduced, and by a radiation detector having such a scintillator panel and a sensor panel bonded together.
摘要:
A scintillator panel having a wavelength conversion member has some problems: lowered durability to be caused by an area not covered with a protective layer around a projection formed on the wavelength conversion member surface; lowered resolution response and CTF caused by an irregularity of the film thicknesses of wavelength conversion members and a variation in gaps between wavelength conversion members and sensor panels; and breakage of the sensor panel by projections when a radiation detector is formed by bonding the scintillator panel and sensor panel. At least one of these problems can be solved by a scintillator panel having projections on the wavelength conversion member surface whose sizes are reduced, and by a radiation detector having such a scintillator panel and a sensor panel bonded together.
摘要:
Electrochemical corrosion of a reflective layer provided in a scintillator panel is prevented. The scintillator panel includes a conductive base member for supporting a wavelength converter layer and a reflective layer for emitting light converted by a phosphor layer to the outside, in which an insulating layer is formed between the conductive base member and the reflective layer. Alternatively, the above problem is solved by a scintillator panel in which the full circumference including the base member surface side of the reflective layer, the wavelength converter layer side of the reflective layer, and end surfaces of the reflective layer is covered with an insulating layer or a protective film for the reflective layer and a radiation imaging device using such a scintillator panel.