摘要:
The semiconductor oxide layer that forms a part of the spacer layer in the inventive giant magnetoresistive device (CPP-GMR device) is composed of zinc oxide of wurtzite structure that is doped with a dopant given by at least one metal element selected from the group consisting of Zn, Ge, V, and Cr in a content of 0.05 to 0.90 at %: there is the advantage obtained that ever higher MR ratios are achievable while holding back an increase in the area resistivity AR.
摘要:
A magneto-resistive effect (MR) element includes a first magnetic layer and a second magnetic layer in which a relative angle of magnetization directions of the first and second magnetic layers changes according to an external magnetic field; and a spacer layer that is provided between the first magnetic layer and the second magnetic layer. The spacer layer contains gallium nitride (GaN) as a main component. A thin film magnetic head according to one embodiment of the present invention is provided with the following structures: an MR element mentioned above that has a first magnetic layer and a second magnetic layer, as free layers, in which the magnetization direction in the two layers changes according to the external magnetic field; a bias magnetic field application layer that applies a bias magnetic field to the first and second magnetic layers in an orthogonal direction to an air bearing surface (ABS); the bias magnetic field application layer is formed in a rear side of the MR element seen from the ABS; and a sense current flows in an orthogonal direction to a layer surface of the MR element.
摘要:
An MR element according to the present invention has the superior effects that further improve an MR ratio because a structure of a spacer layer 40 is configured of a certain three-layer structure with certain materials, and at least one of a first ferromagnetic layer 30 and a second ferromagnetic layer 50 contains a certain amount of an element selected from the group of nitrogen (N), carbon (C), and oxygen (O).
摘要:
The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, with a sense current applied in the stacking direction, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer near a medium opposite plane and a magnetization direction control area that extends further rearward (toward the depth side) from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer in such a way that the magnetizations of the said first and second ferromagnetic layers are antiparallel with each other along the width direction axis; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions. It is thus possible to obtain a magnetoresistive device that, while the magnetization directions of two magnetic layers (free layers) stay stabilized, can have high reliability, and can improve linear recording densities by the adoption of a structure capable of narrowing the read gap (the gap between the upper and lower shields) thereby meeting recent demands for ultra-high recording densities.
摘要:
An MR element in a CPP-GMR structure includes a first ferromagnetic layer, a spacer layer that is epitaxially formed on the first ferromagnetic layer, a second ferromagnetic layer that is located on the spacer layer, and that is laminated with the first ferromagnetic layer to sandwich the spacer layer. A sense current flows along a lamination direction of the first and second ferromagnetic layers. Angle of magnetization directions of the first ferromagnetic layer and the second ferromagnetic layer relatively change due to an externally applied magnetic field.
摘要:
A thin film magnetic head includes a magnetoresistive effect (MR) laminated body that has the following structure: first and second magnetic layers in which the magnetization direction of at least one of the magnetic layers changes according to an external magnetic field; the first magnetic layer is provided at a lower side of a laminated direction; the second magnetic layer is provided at an upper side of the laminated direction; a non-magnetic intermediate layer made of ZnO sandwiched between the first and the second magnetic layers; a first intermediate interface layer is provided at the interface between the first magnetic layer and the non-magnetic intermediate layer; and a second intermediate interface layer is provided at the interface between the non-magnetic intermediate layer and the second magnetic layer. At least the first intermediate interface layer contains Ag and Zn, or Au and Zn.
摘要:
A thin film magnetic head includes a magnetoresistance (MR) layered body that has first and second magnetic layers whose magnetization direction are changed according to an external magnetic field, a nonmagnetic middle layer and where the first magnetic layer, the nonmagnetic middle layer and the second magnetic layer are disposed in a manner of facing each other in respective order, first and second shield layers that are disposed in a manner of sandwiching the MR-stack in the film surface orthogonal direction of the MR-stack facing the first magnetic layer and the second magnetic layer, respectively, and that also serve as an electrode for applying a sense current to the film surface orthogonal direction of the MR-stack; and a bias magnetic field application means that is disposed on an opposite surface of an air bearing surface (ABS) of the MR-stack, and that applies a bias magnetic field to the MR-stack in the direction orthogonal to the ABS. The first shield layer has a first exchange coupling magnetic field (ECMF) application layer that is disposed in a manner of facing the first magnetic layer, and that transmits to the first magnetic layer an exchange coupling magnetic field in the direction in parallel with the ABS, and that includes an amorphous layer, and has a first antiferromagnetic layer that is disposed on a rear surface of the first ECMF application layer viewed from the first magnetic layer in a manner of facing the first ECMF application layer, and that is exchange-coupled with the first ECMF application layer. The second shield layer has a second exchange coupling magnetic field (ECMF) application layer that is disposed in a manner of facing the second magnetic layer, and that transmits to the second magnetic layer the exchange coupling magnetic field in a direction in parallel with the ABS; and a second antiferromagnetic layer that is disposed on a rear surface of the second ECMF application layer viewed from the second magnetic layer, and that is exchange-coupled with the second ECMF application layer.
摘要:
The inventive fabrication process for magnetoresistive devices (CPP-GMR devices) involves the formation of a zinc oxide or ZnO layer that provides the intermediate layer of a spacer layer, comprising Zn film formation operation for forming a zinc or Zn layer and Zn film oxidization operation for oxidizing the zinc film after the Zn film formation operation. The Zn film formation operation is implemented such that after a multilayer substrate having a multilayer structure before the formation of the Zn film is cooled down to the temperature range of −140° C. to −60° C., the formation of the Zn film is set off, and the Zn film oxidization operation is implemented such that after the completion of the Zn film oxidization operation, oxidization treatment is set off at the substrate temperature range of −120° C. to −40° C. Thus, excelling in both flatness and crystallizability, the ZnO layer makes sure the device has high MR ratios, and can further have an area resistivity AR best suited for the device.
摘要:
In an MR element of the present invention, an effect of an extremely-high MR ratio is obtained since a crystal structure of a CoFe magnetic layer in the vicinity of an interface with a spacer layer is formed as a close packed structure, such as an hcp structure and an fcc structure, and a total existing ratio of these crystal structures is 25% or more by an area ratio.
摘要:
The semiconductor oxide layer that forms a part of the spacer layer in the inventive giant magnetoresistive device (CPP-GMR device) is composed of zinc oxide of wurtzite structure that is doped with a dopant given by at least one metal element selected from the group consisting of Zn, Ge, V, and Cr in a content of 0.05 to 0.90 at %: there is the advantage obtained that ever higher MR ratios are achievable while holding back an increase in the area resistivity AR.