摘要:
A semiconductor acceleration sensor having beam parts formed in substantially L-shape to surround a weight part, wherein formed to surround a square part, as seen in plan view and constituting the weight part, are two elongated L-shaped beam parts, at locations close to proximal end portions of which are formed protruding portions protruding from a fixed part toward the weight part, and receiving recessed portions protruding from the weight part toward the fixed part to surround the protruding portions. The protruding portions have an outer shape substantially the same as an inner wall surface of the receiving recessed portions so that movements of the weight part in any directions in a horizontal direction perpendicular to an up and down direction are limited as a result of reception of the protruding portions by the receiving recessed portions. Thus, even when a side impact is applied to the acceleration sensor, the weight part is prevented from moving significantly, thereby preventing an excessive stress from being applied to the beam parts to break the beam parts.
摘要:
A semiconductor acceleration sensor having beam parts formed in substantially L-shape to surround a weight part, wherein formed to surround a square part, as seen in plan view and constituting the weight part, are two elongated L-shaped beam parts, at locations close to proximal end portions of which are formed protruding portions protruding from a fixed part toward the weight part, and receiving recessed portions protruding from the weight part toward the fixed part to surround the protruding portions. The protruding portions have an outer shape substantially the same as an inner wall surface of the receiving recessed portions so that movements of the weight part in any directions in a horizontal direction perpendicular to an up and down direction are limited as a result of reception of the protruding portions by the receiving recessed portions. Thus, even when a side impact is applied to the acceleration sensor, the weight part is prevented from moving significantly, thereby preventing an excessive stress from being applied to the beam parts to break the beam parts.
摘要:
In a semiconductor physical quantity sensor of electrostatic capacitance type, mutually facing peripheral areas (bonding areas) of a glass substrate and a silicon substrate are contacted for anodic bonding, while at the same time, both substrates have an anodic bonding voltage applied therebetween so as to be integrated. A fixed electrode is formed on a bonding face-side surface of the silicon substrate, while a movable electrode is formed on a bonding face-side surface of the semiconductor substrate. An equipotential wiring, which short-circuits the fixed electrode to the movable electrode as a countermeasure to discharge in anodic bonding, is formed on the bonding face-side surface of the glass substrate inside the bonding area before the anodic bonding. After the anodic bonding, the equipotential wiring is cut and removed. By manufacturing the sensor in this manner, the fixed electrode of the insulating substrate is made equipotential to the movable electrode of the semiconductor substrate when the insulating substrate is anodically bonded to the semiconductor substrate, thereby preventing discharge from occurring. Accordingly, it is possible to obtain a high bonding strength and desired sensor characteristics without causing bonding voids to occur and a sensor chip to increase in size.
摘要:
In a semiconductor physical quantity sensor of electrostatic capacitance type, mutually facing peripheral areas (bonding areas) of a glass substrate and a silicon substrate are contacted for anodic bonding, while at the same time, both substrates have an anodic bonding voltage applied therebetween so as to be integrated. A fixed electrode is formed on a bonding face-side surface of the silicon substrate, while a movable electrode is formed on a bonding face-side surface of the semiconductor substrate. An equipotential wiring, which short-circuits the fixed electrode to the movable electrode as a countermeasure to discharge in anodic bonding, is formed on the bonding face-side surface of the glass substrate inside the bonding area before the anodic bonding. After the anodic bonding, the equipotential wiring is cut and removed. By manufacturing the sensor in this manner, the fixed electrode of the insulating substrate is made equipotential to the movable electrode of the semiconductor substrate when the insulating substrate is anodically bonded to the semiconductor substrate, thereby preventing discharge from occurring. Accordingly, it is possible to obtain a high bonding strength and desired sensor characteristics without causing bonding voids to occur and a sensor chip to increase in size.
摘要:
A sensor unit includes a pressure sensor, an acceleration sensor and a signal-processing circuit, which are disposed on the bottom surface of a lead to form a line in the longitudinal direction of the sensor unit. The pressure sensor and the acceleration sensor are disposed at respective symmetrical positions with respect to the center of the signal-processing circuit in the longitudinal direction of the sensor unit. Each of the pressure sensor and the acceleration sensor has substantially the same height dimension. The sensors, the signal-processing circuit and the lead are sealed with a molded body, in such a manner as to allow lead terminals of the lead to protrude outside the molded body. The signal-processing circuit is operable, based on a signal from the acceleration sensor, to control the ON/OFF action of the pressure sensor.
摘要:
A sensor unit includes a pressure sensor, an acceleration sensor and a signal-processing circuit, which are disposed on the bottom surface of a lead to form a line in the longitudinal direction of the sensor unit. The pressure sensor and the acceleration sensor are disposed at respective symmetrical positions with respect to the center of the signal-processing circuit in the longitudinal direction of the sensor unit. Each of the pressure sensor and the acceleration sensor has substantially the same height dimension. The sensors, the signal-processing circuit and the lead are sealed with a molded body, in such a manner as to allow lead terminals of the lead to protrude outside the molded body. The signal-processing circuit is operable, based on a signal from the acceleration sensor, to control the ON/OFF action of the pressure sensor.
摘要:
In a vehicular brake-by-wire braking system, during a four wheel simultaneous control mode when regeneration cooperative braking is implemented, a pair of electromagnetic isolation control valves and one of normally closed electromagnetic pressure relief valves corresponding to regeneration side left and right wheel brakes and normally closed electromagnetic pressure relief valves corresponding to non-regeneration side left and right wheel brakes are caused to operate to open and close, while the other of the normally closed electromagnetic pressure relief valves corresponding to the regeneration side left and right wheel brakes and the normally closed electromagnetic pressure relief valves corresponding to the non-regeneration side left and right wheel brakes are put in de-energized states in which the valves concerned are kept closed, and all normally open electromagnetic pressure supply valves are put in de-energized states in which the valves concerned are kept opened.
摘要:
Switching elements are driven by a control signal outputted from a control circuit, so that a rotating magnetic field is generated from a stator coil to rotate a rotor of a synchronous electric motor. The control signal is generated through use of a selected modulation scheme, which is selected from a plurality of modulation schemes. The control circuit determines which one of the modulation schemes is used as the selected modulation scheme based on a sensed voltage value of a voltage sensor, which senses an output voltage of a power supply device.
摘要:
A shock absorber includes a cylinder tube, a piston fitted slidably in an axial direction in the cylinder tube and arranged to divide an inside of the cylinder tube into first and second fluid chambers, a piston rod extending from the piston to an outside of the cylinder tube, and damping force generation sections arranged to generate a damping force by making hydraulic fluid flow between the first and the second fluid chambers. Cavities are formed in at least one of the cylinder tube and the piston rod. Flowable matter having a rheological characteristic is sealed in the cavities.
摘要:
A vehicle is carried by a number of supporting members, such as wheels. Movement between the supporting members and the vehicle body is controlled by respective dampers. Several interrelationships between and among the dampers are disclosed. A flow regulator is provided to augment damping forces under a variety of operating conditions.