摘要:
In a magnetic random access memory (MRAM), setting data which determines the supply/cutoff timing, magnitude, and temporal change (current waveform) of a write word/bit line current is registered in a setting circuit. A write current waveform control circuit generates a write word line drive signal, write word line sink signal, write bit line drive signal, and write bit line sink signal on the basis of the setting data. The current waveform of the write word/bit line current is controlled for each chip or memory cell array.
摘要:
In a magnetic random access memory (MRAM), setting data which determines the supply/cutoff timing, magnitude, and temporal change (current waveform) of a write word/bit line current is registered in a setting circuit. A write current waveform control circuit generates a write word line drive signal, write word line sink signal, write bit line drive signal, and write bit line sink signal on the basis of the setting data. The current waveform of the write word/bit line current is controlled for each chip or memory cell array.
摘要:
Setting data which determines the supply/cutoff timing, magnitude, and temporal change (current waveform) of a write word/bit line current is registered in a setting circuit. A write current waveform control circuit generates a write word line drive signal, write word line sink signal, write bit line drive signal, and write bit line sink signal on the basis of the setting data. The current waveform of the write word/bit line current is controlled for each chip or memory cell array.
摘要:
A magnetic field H1 in the hard-axis direction and a magnetic field H2 in the easy-axis direction are caused to simultaneously act on a MTJ element having an ideal asteroid curve, thereby reversing the magnetizing direction of the storing layer of the MTJ element. When the actual asteroid curve shifts in the hard-axis direction by Ho, a corrected synthesized magnetic field ({right arrow over (H1)}+{right arrow over (H2)}+{right arrow over (Ho)}) is generated in write operation to reliably reverse the magnetizing direction. The corrected synthesized magnetic field can easily be generated by individually controlling a write word/bit line current on the basis of programmed setting data.
摘要:
A semiconductor memory device comprises word lines, bit lines, memory cells, a row decoder, a column decoder, and a write circuit. The word lines are formed along a first direction. The bit lines are formed along a second direction. Memory cells include magneto-resistive elements and are arranged at intersections of the word lines and the bit lines. The row decoder selects at least one of the word lines. The column decoder selects at least one of the bit lines. The write circuit supplies first and second write currents to a selected word line and selected bit line respectively and writes data into a selected memory cell arranged at the intersection of the selected word line and the selected bit line. The write circuit changes the current values of the first and second write currents according to a temperature change.
摘要:
A semiconductor memory device comprises word lines, bit lines, memory cells, a row decoder, a column decoder, and a write circuit. The word lines are formed along a first direction. The bit lines are formed along a second direction. Memory cells include magneto-resistive elements and are arranged at intersections of the word lines and the bit lines. The row decoder selects at least one of the word lines. The column decoder selects at least one of the bit lines. The write circuit supplies first and second write currents to a selected word line and selected bit line respectively and writes data into a selected memory cell arranged at the intersection of the selected word line and the selected bit line. The write circuit changes the current values of the first and second write currents according to a temperature change.
摘要:
A method of manufacturing a magnetic memory device includes forming an insulation layer on a substrate, forming a lower electrode on the insulation layer, forming a magneto-resistive film on an upper surface of the lower electrode, the magneto-resistive film including an insulation barrier layer and a plurality of magnetic films stacked on both sides of the insulation barrier layer, stacking a mask layer on the magneto-resistive film, performing ion etching on the magneto-resistive film, using the mask layer as a mask, thereby forming a magneto-resistive element, forming an insulation film on upper surfaces of the mask, the magneto-resistive element and the lower electrode, and etching the insulation film with an ion beam such that a side surface of the magneto-resistive element is exposed.
摘要:
A method of manufacturing a magnetoresistance effect device, including: forming a first ferromagnetic body, a nonmagnetic dielectric layer on the first ferromagnetic body, and a second ferromagnetic body on the nonmagnetic dielectric layer; etching part of an external region of a predetermined ferromagnetic tunnel junction region using a first linear mask pattern which is traversing the predetermined ferromagnetic tunnel junction region; and etching another part of the external region of the predetermined ferromagnetic tunnel junction region using a second linear mask pattern which is traversing the predetermined ferromagnetic tunnel junction region and intersecting with the first linear mask pattern.
摘要:
There is provided a magnetoresistance effect element including a first pinned ferromagnetic layer, a second pinned ferromagnetic layer facing the first pinned ferromagnetic layer, surface regions of the first and second pinned ferromagnetic layer facing each other being different from each other in composition, a free ferromagnetic layer intervening between the first and second pinned ferromagnetic layers, a first tunnel barrier layer intervening between the first pinned ferromagnetic layer and the free ferromagnetic layer, and a second tunnel barrier layer intervening between the second pinned ferromagnetic layer and the free ferromagnetic layer.
摘要:
A method of manufacturing a magnetic memory device includes forming an insulation layer on a substrate, forming a lower electrode on the insulation layer, forming a magneto-resistive film on an upper surface of the lower electrode, the magneto-resistive film including an insulation barrier layer and a plurality of magnetic films stacked on both sides of the insulation barrier layer, stacking a mask layer on the magneto-resistive film, performing ion etching on the magneto-resistive film, using the mask layer as a mask, thereby forming a magneto-resistive element, forming an insulation film on upper surfaces of the mask, the magneto-resistive element and the lower electrode, and etching the insulation film with an ion beam such that a side surface of the magneto-resistive element is exposed.