摘要:
A sol-gel liquid for use in forming an individualized electromechanical conversion film of an electromechanical conversion element by inkjet methods, including a lead zirconate titanate (PZT) or the PZT and other metal complex oxides; and an organic solvent having properties surrounded by A, B, C, D, E and F in triangular composition diagram of FIG. 3, and having a viscosity of from 3 to 13 mPa·s, a surface tension of 30±5 mN/m and a dehydration rate of from 70 to 80% relative to pure water.
摘要:
A method of producing an electromechanical transducer includes a first step of partially modifying a surface of a first electrode; a second step of applying a sol-gel liquid including a metal composite oxide to a predetermined area of the partially-modified surface of the first electrode; a third step of performing drying, thermal decomposition, and crystallization on the applied sol-gel liquid to form an electromechanical transduction film, wherein the drying includes a heat-treatment at 120° C., the decomposition includes thermal decomposition performed at 500° C., and the crystallization includes heat treatment for crystallization at 700° C.; a fourth step of repeating the first, second, and third steps to obtain the electromechanical transduction film with a desired thickness; and a fifth step of forming a second electrode on the electromechanical transduction film.
摘要:
A sol-gel liquid for use in forming an individualized electromechanical conversion film of an electromechanical conversion element by inkjet methods, including a lead zirconate titanate (PZT) or the PZT and other metal complex oxides; and an organic solvent having properties surrounded by A, B, C, D, E and F in triangular composition diagram of FIG. 3, and having a viscosity of from 3 to 13 mPa·s, a surface tension of 30±5 mN/m and a dehydration rate of from 70 to 80% relative to pure water.
摘要:
A method of producing an electromechanical transducer includes a first step of partially modifying a surface of a first electrode; a second step of applying a sol-gel liquid including a metal composite oxide to a predetermined area of the partially-modified surface of the first electrode; a third step of performing drying, thermal decomposition, and crystallization on the applied sol-gel liquid to form an electromechanical transduction film; a fourth step of repeating the first, second, and third steps to obtain the electromechanical transduction film with a desired thickness; and a fifth step of forming a second electrode on the electromechanical transduction film.
摘要:
A method for manufacturing an electromechanical transducer film including a lower electrode and plural layers of a sol-gel solution film formed on the lower electrode by an inkjet method, the method including the steps of a) modifying a surface of the lower electrode, b) forming a first sol-gel solution film on the surface of the lower electrode by ejecting droplets of a sol-gel solution to the surface of the lower electrode, and c) forming a second sol-gel solution film on the first sol-gel solution film by ejecting droplets of the sol-gel solution to a surface of the first sol-gel solution film. Adjacent dots formed on the surface of the lower electrode by the droplets ejected in step b) overlap each other. Adjacent dots formed on the surface of the first sol-gel solution film by the droplets ejected in step c) do not overlap each other.
摘要:
Disclosed is an electromechanical transducer element that includes an electromechanical transducer film formed of a complex oxide (PZT) including lead (Pb), zirconium (Zr), and titanium (Ti). The electromechanical transducer film is formed by laminating plural PZT thin films until a thickness of the formed electromechanical transducer film becomes a predetermined thickness. When an atomic weight ratio (Pb/(Zr+Ti)) of average Pb included in the formed electromechanical transducer film is denoted by Pb(avg) and an atomic weight ratio (Pb/(Zr+Ti)) of Pb in any one of laminate interfaces of the plural PZT thin films is denoted by Pb(interface), the Pb(avg) is greater than or equal to 100 atomic percentage (at %) and less than or equal to 110 atomic percentage (at %), and a fluctuation ratio ΔPb=Pb(avg)−Pb(interface) of Pb in the laminate interface is less than or equal to 20 percent.
摘要:
A thin-film forming apparatus for forming a thin film on a substrate by using an ink-jet method includes an ink applying unit that applies an ink drop for thin-film formation to a predetermined area on a surface of the substrate; at least one laser light source for heating the ink drop thereby forming a thin film; and a laser-light irradiating unit that irradiates, with a laser light from the laser light source, a first spot positioned on a back side of the predetermined area of the substrate to which the ink drop has been applied.
摘要:
A thin-film forming apparatus for forming a thin film on a substrate by using an ink-jet method includes an ink applying unit that applies an ink drop for thin-film formation to a predetermined area on a surface of the substrate; at least one laser light source for heating the ink drop thereby forming a thin film; and a laser-light irradiating unit that irradiates, with a laser light from the laser light source, a first spot positioned on a back side of the predetermined area of the substrate to which the ink drop has been applied.
摘要:
Disclosed is an electromechanical transducer element including a first electrode disposed on a substrate; an electromechanical transducer film disposed on a first portion of the first electrode; and a second electrode disposed on a second portion of the electromechanical transducer film, wherein an actuator portion formed by laminating the substrate, the first electrode, the electromechanical transducer film, and the second electrode has a stiffness such that, in a cross section of the actuator portion, the stiffness gradually increases from an end portion of the actuator portion to a center portion of the actuator portion.
摘要:
Disclosed is an electromechanical transducer element including a first electrode disposed on a substrate; an electromechanical transducer film disposed on a first portion of the first electrode; and a second electrode disposed on a second portion of the electromechanical transducer film, wherein an actuator portion formed by laminating the substrate, the first electrode, the electromechanical transducer film, and the second electrode has a stiffness such that, in a cross section of the actuator portion, the stiffness gradually increases from an end portion of the actuator portion to a center portion of the actuator portion.