摘要:
A method of acylating the 3′ position of anthocyanin using an enzyme that transfers an aromatic acyl group to a sugar at the 3′ position of anthocyanin or a gene encoding the enzyme.
摘要:
A novel flavonoid glucosyltransferase originating from rose, a nucleic acid encoding that enzyme, for example, a flavonoid glucosyltransferase having an amino acid sequence indicated in SEQ ID NO. 2 or SEQ ID NO. 4, a nucleic acid encoding that enzyme, a method for changing the color of a rose flower using that nucleic acid, and a rose plant capable of changing color, are provided.
摘要翻译:源自玫瑰的新型黄酮葡糖基转移酶,编码该酶的核酸,例如具有SEQ ID NO:1所示氨基酸序列的类黄酮葡糖基转移酶。 2或SEQ ID NO。 4,提供了编码该酶的核酸,使用该核酸改变玫瑰花的颜色的方法,以及能够变色的玫瑰植物。
摘要:
A method for producing a rose characterized by artificially suppressing the rose endogenous metabolic pathway and expressing the pansy gene coding for flavonoid 3′,5′-hydroxylase.
摘要:
A method of acylating the 3′ position of anthocyanin using an enzyme that transfers an aromatic acyl group to a sugar at the 3′ position of anthocyanin or a gene encoding the enzyme.
摘要:
The invention provides a rose characterized by comprising a flavone added by a genetic modification method. The flavone is typically produced by expression of a transferred flavone synthase gene. The flavone synthase gene is, for example, a flavone synthase gene of the family Scrophulariaceae, and specifically it may be the flavone synthase gene of snapdragon of the family Scrophulariaceae, or the flavone synthase gene of torenia of the family Scrophulariaceae.
摘要:
The invention provides a rose characterized by comprising a flavone and malvidin added by a genetic modification method. The flavone and malvidin are typically produced by expression of a transferred flavone synthase gene, pansy flavonoid 3′,5′-hydroxylase gene and anthocyanin methyltransferase gene. The flavone synthase gene is, for example a flavone synthase gene of the family Scrophulariaceae, and specifically it may be the flavone synthase gene of snapdragon of the family Scrophulariaceae, or the flavone synthase gene of torenia of the family Scrophulariaceae. The flavonoid 3′,5′-hydroxylase gene is, for example, the pansy flavonoid 3′,5′-hydroxylase gene. The anthocyanin methyltransferase gene is, for example, the methyltransferase gene of torenia of the family Scrophulariaceae.
摘要:
A method for producing a rose characterized by artificially suppressing the rose endogenous metabolic pathway and expressing the pansy gene coding for flavonoid 3′,5′-hydroxylase.
摘要:
The invention provides a rose characterized by comprising a flavone and delphinidin added by a genetic modification method. The flavone and delphinidin are typically produced by expression of a transferred flavone synthase gene and flavonoid 3′,5′-hydroxylase gene, respectively. The flavone synthase gene is, for example, a flavone synthase gene of the family Scrophulariaceae, and specifically it may be the flavone synthase gene of snapdragon of the family Scrophulariaceae, or the flavone synthase gene of torenia of the family Scrophulariaceae. The flavonoid 3′,5′-hydroxylase gene is, for example, the pansy (Viola×wittrockiana) flavonoid 3′,5′-hydroxylase gene.
摘要:
The present invention provides a plant transformation vector for producing a plant for detecting an environmental chemical by a change of flower color, the plant transformation vector comprising an AhR gene expressibly incorporated therein, an AhR ligand stimulus-inducible promoter, and an expression suppressive factor for suppressing the expression of a gene involved in the synthesis of a desired flower pigment, the factor being expressibly incorporated therein by the promoter.
摘要:
The present invention provides: a plant body with high phosphate accumulation, which is transformed to express a gene encoding a transcription factor of a gene involved in phosphate starvation reaction; a method for producing the same; a recombinant expression vector for use in the production; and a method for utilizing the same.