摘要:
The invention relates to a sintered alloy. This sintered alloy includes 3-13.4 wt % of W, 0.4-5.6 wt % or 0.8-5.9 wt % of V, 0.2-5.6 wt % of Cr, 0.1-0.6 wt % or 0.6-5.0 wt % of Si, 0.1-0.6 wt % or 0.2-1.0 wt % of Mn, 0.6-2.2 wt % of C, and a balance of Fe. The sintered alloy includes first and second phase which are distributed therein, in a form of spots, respectively. The second phase is in an amount of from 20 to 80 wt %, based on the total weight of the first and second phases. The first phase contains 3-7 wt % of W, 0.5-1.5 wt % of optional V, up to 1 wt % of Cr, 0.1-0.6 wt % or 0.6-5.0 wt % of Si, 0.1-0.6 wt % or 0.2-1.0 wt % of Mn, up to 2.2 wt % of C, and a balance of Fe. The second phase contains 3-15 wt % of W, 2-7 wt % of V, 1-7 wt % of Cr, 0.1-0.6 wt % or 0.6-5.0 wt % of Si, 0.1-0.6 wt % or 0.2-1.0 wt % of Mn, up to 2.2 wt % of C, and a balance of Fe. When the manganese contents of the first and second phases and the total of the sintered alloy are respectively in a range of from 0.2 to 1.0 wt %, sulfur is respectively contained therein in an amount of from 0.1 to 0.6 wt %. The sintered alloy has wear-resistant at high temperature and good compatibility without damaging mating part that is in contact with the sintered alloy.
摘要:
A wear resistant sintered member exhibits superior wear resistance at the same level as those of the conventional materials without using a Co-based hard phase is provided. A first hard phase comprising Mo silicide particles dispersed in an Fe-based alloy matrix of the first hard phase and a second hard phase comprising a ferrite phase or a mixed phase of ferrite and austenite having a higher Cr concentration than the Fe-based alloy matrix surrounding a core consisting of Cr carbide particles, are diffused in an Fe-based alloy matrix, the Mo silicide particles are contained in the first hard phase in an amount of 3 to 25 % by area, and the Cr carbide particles are contained in the second hard phase in an amount of 3 to 30 % by area.
摘要:
Disclosed is a sintered iron alloy and a method of manufacturing the same. The sintered alloy comprises: an alloy matrix and a lead phase for imparting lubricability to the sintered alloy. The alloy matrix comprises a first alloy phase being composed of 0.5 to 3% nickel by weight, 0.5 to 3% molybdenum by weight, 5.5 to 7.5% cobalt by weight, 0.6 to 1.2% carbon by weight, and the balance iron, and a second alloy phase being composed of 26 to 30% molybdenum by weight, 7 to 9% chromium by weight, 1.5 to 2.5% silicon by weight, and the balance cobalt. The content of the lead phase in the sintered alloy is not more than 3.5% by weight. The lead phase is dispersed in the alloy matrix and a pore which is formed in the alloy matrix. The ratio of the lead dispersed in the alloy matrix to the total lead phase is 60% by weight or more, and the lead phase dispersed in the alloy matrix is particles in which the maximum particle size is 10 .mu.m or less. In manufacture, a lead powder having a particle size of approximately 50 .mu.m or less is mixed a first raw material powder for the first alloy phase and a second raw material powder for the second alloy phase at a lead content of not more than 3.5% by weight. After compacting and sintering the mixture, the sintered compact is cooled so that the temperature of the compact in the vicinity of 328.degree. C. is cooled at a cooling rate of approximately 2.degree. C./min. or more.
摘要:
An iron base sintered alloy with dispersed hard particles is provided which comprises by weight 3 to 15% nickel (Ni), 0.5 to 5% chromium (Cr), 0.5 to 2.0% carbon (C), the remainder iron (Fe) and unavoidable impurities. At least a part of nickel (Ni), molybdenum (Mo) and chromium (Cr) is contained in solid solution of an iron base matrix. At least a part of molybdenum (Mo) and chromium (Cr) is dispersed within the iron base matrix to form fine carbides or intermetallic compounds thereof. Uniformly dispersed within the iron base matrix are hard particles of 3 to 20% contain 50 to 57% chromium (Cr), 18 to 22% molybdenum (Mo), 8 to 12% cobalt (Co), 0.1 to 1.4% carbon (C), 0.8 to 1.3% silicon (Si) and the remainder iron (Fe) to strengthen the dispersion and remarkably improve wear resistance.
摘要:
A wear resistant iron-base sintered alloy consists essentially of at least one selected from the group consisting of molybdenum and tungsten, ranging from 5 to 20% by weight, chromium ranging from 2 to 10% by weight, silicon ranging from 0.1 to 0.9% by weight, manganese ranging not more than 0.7% by weight, phosphorus ranging not more than 0.05% by weight, carbon ranging from 0.1 to 0.8% by weight, boron ranging from 0.5 to 2.0% by weight, and balance including iron and an impurity, so that fine multiple carbide, multiple boride, and/or multiple carbide-boride can be homogeneously dispersed as hard grains in the structure of a matrix, thereby exhibiting excellent wear resistance, scuffing resistance and pitting resistance.
摘要:
A sintered sprocket has a high overall density and excellent contact pressure resistance. The sprocket is produced from a sintered alloy selected from the following alloys ((1) to (3)), is densified to have a relative density of 95% or higher in the surface layer of the gear teeth by forming by rolling, having a surface hardness of 700 HV or higher, and is useful for a crankshaft, a cam shaft, a balancer shaft, or a water pump shaft of an internal combustion engine: (1) an Fe—Mo—C based sintered alloy containing Mo at 1.0 to 2.0% by mass; (2) an Fe—Mo—Ni—C based sintered alloy containing Mo at more than 1.0 and not more than 2.0% by mass, and Ni at more than 1.0 and not more than 2.5% by mass, or (3) an Fe—Mo—Ni—Cu—C based sintered alloy containing Mo at 0.3 to 1.0% by mass, Ni at not less than 1.5 to less than 3.0% by mass, and Cu at 1.0 to 2.5% by mass.
摘要:
A sintered sprocket for a silent chain is obtained from a material with few addition elements by a simple densifying method. The sintered sprocket is made of an ferrous material having an ovarall composition containing Cu at 1 to 2%, C at 0.5 to 0.8%, Mn as an inevitable impurity at 0.10% or less, and balance of Fe and other inevitable impurities by mass and has a density of 7.1 Mg/m3 or higher, 65 HRA or higher as a hardness in the gear teeth, and a martensite, sorbite, bainite, or their mixed structure as a cross-sectional microscopic structure in at least the gear teeth and the peripheral area of the gear teeth.
摘要翻译:用于无声链的烧结链轮通过简单的致密化方法由具有少量添加元素的材料获得。 烧结链轮由含有1〜2%的Cu,0.5〜0.8%的C,0.10%以下的不可避免的杂质的Mn,以及Fe等不可避免的杂质和/ 作为齿轮齿的硬度的密度为7.1Mg / m 3以上,65HRC以上的密度,作为横截面微观结构的马氏体,索氏体,贝氏体或它们的混合结构 至少在齿轮齿和齿轮齿的周边区域。
摘要:
A sintered sprocket has a high overall density and excellent contact pressure resistance. The sprocket is produced from a sintered alloy selected from the following alloys ((1) to (3)), is densified to have a relative density of 95% or higher in the surface layer of the gear teeth by forming by rolling, having a surface hardness of 700 HV or higher, and is useful for a crankshaft, a cam shaft, a balancer shaft, or a water pump shaft of an internal combustion engine: (1) an Fe—Mo—C based sintered alloy containing Mo at 1.0 to 2.0% by mass; (2) an Fe—Mo—Ni—C based sintered alloy containing Mo at more than 1.0 and not more than 2.0% by mass, and Ni at more than 1.0 and not more than 2.5% by mass, or (3) an Fe—Mo—Ni—Cu—C based sintered alloy containing Mo at 0.3 to 1.0% by mass, Ni at not less than 1.5 to less than 3.0% by mass, and Cu at 1.0 to 2.5% by mass.
摘要:
A sintered sprocket for a silent chain is obtained from a material with few addition elements by a simple densifying method. The sintered sprocket is made of an ferrous material having an ovarall composition containing Cu at 1 to 2%, C at 0.5 to 0.8%, Mn as an inevitable impurity at 0.10% or less, and balance of Fe and other inevitable impurities by mass and has a density of 7.1 Mg/m3 or higher, 65 HRA or higher as a hardness in the gear teeth, and a martensite, sorbite, bainite, or their mixed structure as a cross-sectional microscopic structure in at least the gear teeth and the peripheral area of the gear teeth.
摘要翻译:用于无声链的烧结链轮通过简单的致密化方法从具有少量添加元素的材料获得。 烧结链轮由含有1〜2%的Cu,0.5〜0.8%的C,0.10%以下的不可避免的杂质的Mn,以及Fe等不可避免的杂质和/ 作为齿轮齿的硬度的密度为7.1Mg / m 3以上,65HRC以上的密度,作为横截面微观结构的马氏体,索氏体,贝氏体或它们的混合结构 至少在齿轮齿和齿轮齿的周边区域。
摘要:
A sintered sprocket for a silent chain is obtained from a material with few addition elements by a simple densifying method. The sintered sprocket is made of an ferrous material having an ovarall composition containing Cu at 1 to 2%, C at 0.5 to 0.8%, Mn as an inevitable impurity at 0.10% or less, and balance of Fe and other inevitable impurities by mass and has a density of 7.1 Mg/m3 or higher, 65 HRA or higher as a hardness in the gear teeth, and a martensite, sorbite, bainite, or their mixed structure as a cross-sectional microscopic structure in at least the gear teeth and the peripheral area of the gear teeth.
摘要翻译:用于无声链的烧结链轮通过简单的致密化方法从具有少量添加元素的材料获得。 烧结链轮由含有1〜2%的Cu,0.5〜0.8%的C,0.10%以下的不可避免的杂质的Mn,以及Fe等不可避免的杂质和/ 至少齿轮中具有7.1Mg / m 3或更高,65HRC或更高的密度作为齿轮齿的硬度,以及马氏体,索氏体,贝氏体或其混合结构作为横截面微观结构 牙齿和齿轮齿的周边区域。