摘要:
A semiconductor device (1) includes a semiconductor wafer (11) on which a plurality of semiconductor chip forming regions (1A) is formed, a circuit section (12) which is provided within each of the semiconductor chip forming regions (1A) of the semiconductor wafer (11), a control circuit section (14), provided within each of the semiconductor chip forming regions (1A) and connected to the circuit section (12), that controls electric power supplied to the circuit section (12), a power supply line (18) connected to the plurality of control circuit section (14), and a reference power line (17) connected to the plurality of control circuit section (14). In each of the control circuit sections (14), a voltage of electric power supplied from the power supply line (18) is controlled on the basis of a reference voltage from the reference power line (17).
摘要:
A semiconductor device (1) includes a semiconductor wafer (11) on which a plurality of semiconductor chip forming regions (1A) is formed, a circuit section (12) which is provided within each of the semiconductor chip forming regions (1A) of the semiconductor wafer (11), a control circuit section (14), provided within each of the semiconductor chip forming regions (1A) and connected to the circuit section (12), that controls electric power supplied to the circuit section (12), a power supply line (18) connected to the plurality of control circuit section (14), and a reference power line (17) connected to the plurality of control circuit section (14). In each of the control circuit sections (14), a voltage of electric power supplied from the power supply line (18) is controlled on the basis of a reference voltage from the reference power line (17).
摘要:
A semiconductor test apparatus, semiconductor device, and test method are provided that enable the realization of a high-speed delay test. Semiconductor test apparatuses (1a-1c) include: flip-flops (11) each provided with first input terminal SI, second input terminal D, mode terminal SE that accepts a mode signal indicating either a first mode or a second mode, clock terminal CK that accepts a clock signal, and output terminal Q, the flip-flops (11) selecting first input terminal SI when the mode signal indicates the first mode, selecting second input terminal D when the mode signal indicates the second mode, and holding information being received by the input terminal that was selected based on the mode signal in synchronization with the clock signal and supplying as output from output terminal Q; and hold unit 12 that holds a set value and that provides the set value to first input terminal SI.
摘要:
A semiconductor test apparatus, semiconductor device, and test method are provided that enable the realization of a high-speed delay test. Semiconductor test apparatuses (1a-1c) include: flip-flops (11) each provided with first input terminal SI, second input terminal D, mode terminal SE that accepts a mode signal indicating either a first mode or a second mode, clock terminal CK that accepts a clock signal, and output terminal Q, the flip-flops (11) selecting first input terminal SI when the mode signal indicates the first mode, selecting second input terminal D when the mode signal indicates the second mode, and holding information being received by the input terminal that was selected based on the mode signal in synchronization with the clock signal and supplying as output from output terminal Q; and hold unit 12 that holds a set value and that provides the set value to first input terminal SI.
摘要:
A semiconductor device includes a semiconductor wafer in which semiconductor chip forming regions and a scribe region located between the semiconductor chip forming regions are formed, a plurality of semiconductor chip circuit portions provided over the semiconductor wafer, a plurality of first conductive layers, provided in each of the semiconductor chip forming regions, which is electrically connected to each of the circuit portions, and a first connecting portion that electrically connects the first conductive layers to each other across a portion of the scribe region. An external power supply or grounding pad is connected to any one of the first conductive layer and the first connecting portion. The semiconductor device includes a communication portion, connected to the circuit portion, which performs communication with the outside by capacitive coupling or inductive coupling.
摘要:
An electronic circuit includes: a first power line capable of supplying power; a second power line capable of supplying power independently from the first power line; a main circuit connected to the second power line; a detector that detects the supply of power from the first power line or the second power line; and a controller connected to the first power line and the second power line, wherein the controller controls a voltage or a current supplied from the first power line and supplies the voltage or the current to the main circuit when the detector detects supply of power from the first power line.
摘要:
A semiconductor wafer in which a plurality of regions, designed to become semiconductor chips are provided in a matrix array with interposition of a dicing line(s) respectively separating the regions. The semiconductor wafer comprises: a plurality of test pads provided in an area(s) of the semiconductor wafer disposed between the semiconductor chips, inclusive of the dicing line(s); an inter-test pad interconnect(s) provided in parallel with the test pads in the area(s) of the semiconductor wafer disposed between the regions to become semiconductor chips; the inter-test pad interconnect(s) being connected to the test pads; and an inter-chip interconnect that interconnects at least two of the regions designed to become semiconductor chips; the inter-test pad interconnect being electrically connected to the inter-chip interconnect.
摘要翻译:设置成成为半导体芯片的多个区域的半导体晶片以分别分开该区域的切割线插入矩阵阵列中。 半导体晶片包括:多个测试焊盘,设置在设置在半导体芯片之间的半导体晶片的区域中,包括切割线; 与设置在所述半导体芯片之间的半导体晶片的区域中的测试焊盘平行设置的测试间互连(inter-test pad interconnect); 所述测试间互连连接到所述测试焊盘; 以及将设计成半导体芯片的区域中的至少两个互连的芯片间互连; 所述测试间互连件电连接到所述芯片间互连。
摘要:
A control voltage generating circuit according to an aspect of the present invention includes: a reference voltage unit that includes a plurality of first transistors of the same conductivity type connected in series between a first power supply and a second power supply, and generates a drain voltage of one of the plurality of first transistor as a reference voltage; and a voltage conversion unit that includes a plurality of second transistors connected in series between the first power supply and the second power supply and having the same conductivity type as that of the reference voltage, supplies the reference voltage to a gate of one of the plurality of second transistors, and outputs a drain voltage of one of the plurality of second transistors as a control voltage.
摘要:
A control voltage generating circuit according to an aspect of the present invention includes: a reference voltage unit that includes a plurality of first transistors of the same conductivity type connected in series between a first power supply and a second power supply, and generates a drain voltage of one of the plurality of first transistor as a reference voltage; and a voltage conversion unit that includes a plurality of second transistors connected in series between the first power supply and the second power supply and having the same conductivity type as that of the reference voltage, supplies the reference voltage to a gate of one of the plurality of second transistors, and outputs a drain voltage of one of the plurality of second transistors as a control voltage.
摘要:
There is provided an aging diagnostic device including: a reference ring oscillator (101) that constitutes a ring oscillator using an odd-numbered plurality of logic gates constituted using a CMOS circuit; a test ring oscillator (102) that constitutes a ring oscillator using an odd-numbered plurality of logic gates having the same configuration as that of the logic gate; a load unit (104) that inputs a load signal to the test ring oscillator (102); a control unit (105) that simultaneously inputs a control signal instructing a start of oscillation of the reference ring oscillator (101) and the test ring oscillator (102) to the reference ring oscillator (101) and the test ring oscillator (102); and a comparison unit (103) that compares differences in the amount of movement of pulses within the reference ring oscillator (101) and the test ring oscillator (102), respectively, in the same time.