摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
A semiconductor device has a nonvolatile memory employing a split-gate type memory cell structure, using a nitride film as a charge storage layer. An n-type semiconductor region is formed in a main surface of a semiconductor substrate, and then, a memory gate electrode of a memory cell of a split gate type and a charge storage layer are formed over the semiconductor region. Subsequently, side walls are formed on side surfaces of the memory gate electrode, and a photoresist pattern is formed over the main surface of the semiconductor substrate. The photoresist pattern serves as an etching mask, and a part of the main surface of the semiconductor substrate is removed by etching to form a dent. In the region of the dent, the n-type semiconductor region is removed. Then, a p-type semiconductor region for forming a channel of an nMIS transistor for selecting a memory cell is formed.
摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
摘要:
Provided is a semiconductor device having, over a semiconductor substrate, a control gate electrode and a memory gate electrode which are adjacent to each other and constitute a nonvolatile memory. The height of the memory gate electrode is lower than the height of the control gate electrode. A metal silicide film is formed over the upper surface of the control gate electrode, but not formed over the upper surface of the memory gate electrode. The memory gate electrode has, over the upper surface thereof, a sidewall insulating film made of silicon oxide. This sidewall insulating film is formed in the same step as that for the formation of respective sidewall insulating films over the sidewalls of the memory gate electrode and the control gate electrode. The present invention makes it possible to improve the production yield and performance of the semiconductor device having a nonvolatile memory.
摘要:
In connection with a semiconductor device including a capacitor element there is provided a technique capable of improving the reliability of the capacitor element. A capacitor element is formed in an element isolation region formed over a semiconductor substrate. The capacitor element includes a lower electrode and an upper electrode formed over the lower electrode through a capacitor insulating film. Basically, the lower electrode and the upper electrode are formed from polysilicon films and a cobalt silicide film formed over the surfaces of the polysilicon films. End portions of the cobalt silicide film formed over the upper electrode are spaced apart a distance from end portions of the upper electrode. Besides, end portions of the cobalt silicide film formed over the lower electrode are spaced apart a distance from boundaries between the upper electrode and the lower electrode.
摘要:
In a semiconductor device which includes a split-gate type memory cell having a control gate and a memory gate, a low withstand voltage MISFET and a high withstand voltage MISFET, variations of the threshold voltage of the memory cell are suppressed. A gate insulating film of a control gate is thinner than a gate insulating film of a high withstand voltage MISFET, the control gate is thicker than a gate electrode 14 of the low withstand voltage MISFET and the ratio of thickness of a memory gate with respect to the gate length of the memory gate is larger than 1. The control gate and a gate electrode 15 are formed in a multilayer structure including an electrode material film 8A and an electrode material layer 8B, and the gate electrode 14 is a single layer structure formed at the same time as the electrode material film 8A of the control gate.