摘要:
Disclosed herein is a nitride based semiconductor device, including: a substrate; a nitride based semiconductor layer having a lower nitride based semiconductor layer and an upper nitride based semiconductor layer on the substrate; an isolation area including an interface between the lower nitride based semiconductor layer and the upper nitride based semiconductor layer; and drain electrodes, source electrode, and gate electrodes formed on the upper nitride based semiconductor layer. According to preferred embodiments of the present invention, in the nitride based semiconductor device, by using the isolation area including the interface between the lower nitride based semiconductor layer and the upper nitride based semiconductor layer, problems of parasitic capacitance and leakage current are solved, and as a result, a switching speed can be improved through a gate pad.
摘要:
The present invention relates to a nitride semiconductor device One aspect of the present invention provides a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a p-type nitride layer formed on the nitride semiconductor layer between the source and drain electrodes; an n-type nitride layer formed on the p-type nitride layer; and a gate electrode formed between the source and drain electrodes to be close to the source electrode and in contact with the n-type nitride layer so that a source-side sidewall thereof is aligned with source-side sidewalls of the p-type and n-type nitride layers.
摘要:
Disclosed herein is a monolithic semiconductor device including: a substrate; a high electron mobility transistor (HEMT) structure that is a first device structure formed on the substrate; and a laterally diffused metal oxide field effect transistor (LDMOSFET) structure that is a second device structure formed to be connected with the HEMT structure on the substrate.The monolithic semiconductor device according to preferred embodiments of the present invention is a device having characteristics of a normally-off device while maintaining high current characteristics in a normally-on state, thereby improving high current and high voltage operation characteristics.
摘要:
The present invention relates to a nitride semiconductor device and a manufacturing method thereof. According to one aspect of the present invention, a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a plurality of p-type nitride semiconductor segments formed on the nitride semiconductor layer and each formed lengthways from a first sidewall thereof, which is spaced apart from the source electrode, to a drain side; and a gate electrode formed to be close to the source electrode and in contact with the nitride semiconductor layer between the plurality of p-type semiconductor segments and portions of the p-type semiconductor segments extending in the direction of a source-side sidewall of the gate electrode aligned with the first sidewalls of the p-type nitride semiconductor segments is provided.
摘要:
Disclosed is a semiconductor device including: a base substrate; a semiconductor layer disposed on the base substrate; an ohmic electrode part which has ohmic electrode lines disposed in a first direction, on the semiconductor layer; and a Schottky electrode part which is disposed to be spaced apart from the ohmic electrode lines on the semiconductor layer and includes Schottky electrode lines disposed in the first direction, wherein the Schottky electrode lines and the ohmic electrode lines are alternately disposed in parallel, and the ohmic electrode part further includes first ohmic electrodes covered by the Schottky electrode lines on the semiconductor layer.
摘要:
Disclosed herein is a nitride based semiconductor device. The nitride based semiconductor device includes: a base substrate; an epitaxial growth layer disposed on the base substrate and having a defect generated due to lattice disparity with the base substrate; a leakage current barrier covering the epitaxial growth layer while filling the defect; and an electrode part disposed on the epitaxial growth layer.
摘要:
Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode spaced apart from the drain electrode, in Schottky contact with the nitride semiconductor layer, and having an ohmic pattern in ohmic contact with the nitride semiconductor layer inside; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
摘要:
Disclosed herein are a nitride semiconductor device and a method for manufacturing the same. According to an exemplary embodiment, there is provided a nitride semiconductor device, including: a nitride semiconductor layer having a 2DEG channel; a drain electrode ohmic-contacted with the nitride semiconductor layer; a source electrode Schottky-contacted with the nitride semiconductor layer, including a plurality of patterned protrusion portions protruded to the drain electrode direction, and including an ohmic pattern ohmic-contacted with the nitride semiconductor layer therein; a dielectric layer disposed on the nitride semiconductor layer between the drain electrode and the source electrode and over at least a portion of the source electrode including the patterned protrusion portions; and a gate electrode disposed on the dielectric, wherein a portion of the gate electrode is disposed on the dielectric layer over the patterned protrusion portions and a drain direction edge portion of the source electrode.
摘要:
There is provided a semiconductor device and a method of manufacturing the same. The semiconductor device includes a base substrate; a semiconductor layer having a receiving groove, a protrusion part, a first carrier injection layer, at least two insulating patterns, and a second carrier injection layer provided on the base substrate, the insulating patterns being disposed to traverse the first carrier injection layer and the second carrier injection layer being spaced apart from the first carrier injection layer and disposed on a lower portion of the protrusion part; a source electrode and a drain electrode disposed to be spaced apart from each other on the semiconductor layer; and a gate electrode insulated from the source electrode and the drain electrode and having a recess part recessed into the receiving groove, wherein a lowest portion of the receiving groove contacts an uppermost layer of the first carrier injection layer or is disposed above the uppermost layer thereof, and an insulating pattern, disposed at an innermost portion of the semiconductor layer among the insulating patterns, traverses the first carrier injection layer and is disposed at the outside of both sides of the receiving groove in a thickness direction thereof.
摘要:
There are provided a semiconductor device and a method for manufacturing the same. The semiconductor device according to the present invention includes a base substrate; a semiconductor layer that includes a receiving groove and a protrusion part formed on the base substrate, a first carrier injection layer and at least two insulating layers formed to traverse the first carrier injection layer formed in the semiconductor layer, and a second carrier injection layer spaced apart from the first carrier injection layer formed on the protrusion part; a source electrode and a drain electrode that are disposed to be spaced apart from each other on the semiconductor layer; and a gate electrode that is insulated from the source electrode and the drain electrode and has a recess part recessed into the receiving groove, wherein the lowest end portion of the receiving groove contacts the uppermost layer of the first carrier injection layer and the insulating pattern disposed at the innermost side of the semiconductor layer among the insulating patterns traverses the entire layer forming the first carrier injection layer and is disposed at the outer side of both side end portions in the thickness direction of the receiving groove.