Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips
    1.
    发明授权
    Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips 失效
    防反射装置具有由具有纳米尖端的硅尖形成的抗反射表面

    公开(公告)号:US07595477B2

    公开(公告)日:2009-09-29

    申请号:US11518537

    申请日:2006-09-07

    IPC分类号: H01J3/14

    CPC分类号: G02B1/118 G02B27/0018

    摘要: Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

    摘要翻译: 描述了具有防反射表面的装置。 该器件包括在衬底上形成有多个硅尖峰的硅衬底。 在硅尖上形成第一金属层以形成抗反射表面。 该装置还包括延伸穿过基底的孔。 在基板上形成第二金属层。 第二金属层包括与孔对准的孔。 间隔件与硅衬底附接以在附接的传感器装置之间提供间隙。 因此,作为微太阳传感器操作,进入孔的光通过孔,以由传感器装置检测。 此外,由传感器装置朝向硅衬底的第一侧反射的光被第一金属层和硅尖头吸收,从而防止反射回传感器装置。

    Device having an anti-reflection surface
    2.
    发明申请
    Device having an anti-reflection surface 失效
    具有防反射面的装置

    公开(公告)号:US20090108183A1

    公开(公告)日:2009-04-30

    申请号:US11518537

    申请日:2006-09-07

    IPC分类号: H01J40/14 H01J3/14 G02B27/00

    CPC分类号: G02B1/118 G02B27/0018

    摘要: Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

    摘要翻译: 描述了具有防反射表面的装置。 该器件包括在衬底上形成有多个硅尖峰的硅衬底。 在硅尖上形成第一金属层以形成抗反射表面。 该装置还包括延伸穿过基底的孔。 在基板上形成第二金属层。 第二金属层包括与孔对准的孔。 间隔件与硅衬底附接以在附接的传感器装置之间提供间隙。 因此,作为微太阳传感器操作,进入孔的光通过孔,以由传感器装置检测。 此外,由传感器装置朝向硅衬底的第一侧反射的光被第一金属层和硅尖头吸收,从而防止反射回传感器装置。

    Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips
    3.
    发明申请
    Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips 有权
    防反射装置具有由具有纳米尖端的硅尖形成的抗反射表面

    公开(公告)号:US20100009495A1

    公开(公告)日:2010-01-14

    申请号:US12462960

    申请日:2009-08-12

    IPC分类号: H01L31/0232 H01L21/00

    CPC分类号: G02B1/118 G02B27/0018

    摘要: Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

    摘要翻译: 描述了具有防反射表面的装置。 该器件包括在衬底上形成有多个硅尖峰的硅衬底。 在硅尖上形成第一金属层以形成抗反射表面。 该装置还包括延伸穿过基底的孔。 在基板上形成第二金属层。 第二金属层包括与孔对准的孔。 间隔件与硅衬底附接以在附接的传感器装置之间提供间隙。 因此,作为微太阳传感器操作,进入孔的光通过孔,以由传感器装置检测。 此外,由传感器装置朝向硅衬底的第一侧反射的光被第一金属层和硅尖头吸收,从而防止反射回传感器装置。

    Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips
    4.
    发明授权
    Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips 有权
    防反射装置具有由具有纳米尖端的硅尖形成的抗反射表面

    公开(公告)号:US07964433B2

    公开(公告)日:2011-06-21

    申请号:US12462960

    申请日:2009-08-12

    IPC分类号: H01L21/00

    CPC分类号: G02B1/118 G02B27/0018

    摘要: Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

    摘要翻译: 描述了具有防反射表面的装置。 该器件包括在衬底上形成有多个硅尖峰的硅衬底。 在硅尖上形成第一金属层以形成抗反射表面。 该装置还包括延伸穿过基底的孔。 在基板上形成第二金属层。 第二金属层包括与孔对准的孔。 间隔件与硅衬底附接以在附接的传感器装置之间提供间隙。 因此,作为微太阳传感器操作,进入孔的光通过孔,以由传感器装置检测。 此外,由传感器装置朝向硅衬底的第一侧反射的光被第一金属层和硅尖头吸收,从而防止反射回传感器装置。

    Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof
    5.
    发明授权
    Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof 有权
    碳纳米管真空计具有广泛的动态范围和工艺

    公开(公告)号:US08387465B2

    公开(公告)日:2013-03-05

    申请号:US12323017

    申请日:2008-11-25

    IPC分类号: G01L9/00

    CPC分类号: G01L21/12

    摘要: A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

    摘要翻译: 微型热导率计采用碳单壁纳米管。 该仪表的工作原理是在低功率和低温度下的电压偏置纳米管和周围气体之间的热交换原理,以测量宽动态范围内的真空度。 测量仪包括两个端子,端子具有恒定电压源,端子之间的单壁碳纳米管,校准测量的纳米管的电导率与周围真空的大小以及与常数源电连通的电流计 电压。 纳米管用于测量真空包括校准纳米管的电导率至真空度,将纳米管暴露于真空,在纳米管上施加恒定电压,在施加恒定电压的情况下测量真空中纳米管的电导率 并使用校准将所测量的电导转换成相应的校准的真空度。 可以悬浮纳米管以最小化通过基底的散热,在甚至更低的压力下增加灵敏度。

    CARBON NANOTUBE VACUUM GAUGES WITH WIDE-DYNAMIC RANGE AND PROCESSES THEREOF
    9.
    发明申请
    CARBON NANOTUBE VACUUM GAUGES WITH WIDE-DYNAMIC RANGE AND PROCESSES THEREOF 有权
    具有宽动态范围的碳纳米管真空计及其工艺

    公开(公告)号:US20110174079A1

    公开(公告)日:2011-07-21

    申请号:US12323017

    申请日:2008-11-25

    IPC分类号: G01L21/12

    CPC分类号: G01L21/12

    摘要: A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

    摘要翻译: 微型热导率计采用碳单壁纳米管。 该仪表的工作原理是在低功率和低温度下的电压偏置纳米管和周围气体之间的热交换原理,以测量宽动态范围内的真空度。 测量仪包括两个端子,端子具有恒定电压源,端子之间的单壁碳纳米管,校准测量的纳米管的电导率与周围真空的大小以及与常数源电连通的电流计 电压。 纳米管用于测量真空包括校准纳米管的电导率至真空度,将纳米管暴露于真空,在纳米管上施加恒定电压,在施加恒定电压的情况下测量真空中纳米管的电导 并使用校准将所测量的电导转换成相应的校准的真空度。 可以悬浮纳米管以最小化通过基底的散热,在甚至更低的压力下增加灵敏度。

    Nanotube schottky diodes for high-frequency applications
    10.
    发明申请
    Nanotube schottky diodes for high-frequency applications 审中-公开
    纳米管肖特基二极管用于高频应用

    公开(公告)号:US20080315181A1

    公开(公告)日:2008-12-25

    申请号:US12072320

    申请日:2008-02-25

    IPC分类号: H01L29/12 H01L21/205

    摘要: Described is a Schottky diode using semi-conducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse-bias breakdown voltages of greater than −15 V. In order to decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases, these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) comparable to that of the state-of-the-art gallium arsenide sold-state Schottky diodes, in the range of 10-13 W/square-root (√) Hz.

    摘要翻译: 描述了使用具有钛肖特基和铂欧姆接触的半导体单壁纳米管(s-SWNT)的肖特基二极管,用于高频应用。 二极管是通过s-SWNT上的异种金属触点的成角度蒸发来制造的。 这些器件表现出具有大于-15V的大反向偏压击穿电压的整流特性。为了降低串联电阻,在单个器件中并行生长多个SWNT,并且金属管被选择性地烧毁。 在低偏差下,这些二极管的理想因素在1.5至1.9的范围内。 在2.5THz(THz)频率下,这些二极管作为室温下的直接检测器的建模,表明与现有技术的砷化镓销售状态肖特基二极管相当的噪声等效功率(NEP)在10- 13 W /平方根(√)Hz。