摘要:
A method for improving an optical sensor is disclosed, which includes the following steps: providing an optical sensor; acid-treating the surface of the optical sensor; forming a thin metal film on the acid-treated surface of the optical sensor; and plasma-modifying the thin metal film on the optical sensor. The aforesaid method is to clean the surface of the optical sensor and then to improve the hydrophilicity thereof by acid treatment. The thin metal film subsequently formed has good flatness and improved adhesion to the optical sensor. Once the optical sensor has the improved hydrophilicity, the plasma modification is performed to further improve optical performance of the optical sensor.
摘要:
A method for surface-modifying a sensor device is disclosed, which includes the following steps: providing a sensor device, wherein a surface of the sensor device has a metal film; forming a surface-modification layer having a plurality of carboxyl groups on the metal film of the sensor device by isopropyl alcohol plasma; and forming a poly(acrylic acid) layer on the surface-modification layer, wherein the acrylic acid of the poly(acrylic acid) layer is grafted to the carboxyl of the surface-modification layer. A surface-modified sensor device is also disclosed.
摘要:
A surface plasmon resonance sensing device that is portable, and having the fiber sensing unit whose resonant wavelength being within the transmission range of a single-mode fiber or a multi-mode fiber, is disclosed. The disclosed sensing device comprises: a light source unit, a fiber sensing unit, an optical sensor, a plurality of fibers, and a computing and displaying unit. The fiber sensing unit includes a trench, a cladding layer, a core layer, a first metallic layer, and a plurality of dielectric thin film layers, wherein the first metallic layer covers the trench, and the plurality of dielectric thin film layers forms on the first metallic layer. The light source provided by the light source unit will become a light signal, after the light passes through the fiber sensing unit. The optical sensor transforms the light signal into a corresponding electric signal, for the usage of the computing and displaying unit.
摘要:
The present invention relates to a surface plasmon resonance detector, that is portable and easy to operate, and its optical-fiber biosensor unit can be readily replaced. The SPR detector of the present invention comprises: a light source; an optical-fiber biosensor unit having a well, a coating layer, and a core layer; an optical detector; a plurality of optical fibers connecting with the light source, the optical-fiber biosensor unit and the optical detector; and a calculation and display unit connecting with the optical detector, wherein the optical detector receives the optical signals from the optical detector and display the calculation results thereof. Besides, the SPR detector of the present invention has high sensitivity and is able to identify species of trace biomolecules.
摘要:
A surface plasmon resonance sensing device that is portable, and having the fiber sensing unit whose resonant wavelength being within the transmission range of a single-mode fiber or a multi-mode fiber, is disclosed. The disclosed sensing device comprises: a light source unit, a fiber sensing unit, an optical sensor, a plurality of fibers, and a computing and displaying unit. The fiber sensing unit includes a trench, a cladding layer, a core layer, a first metallic layer, and a plurality of dielectric thin film layers, wherein the first metallic layer covers the trench, and the plurality of dielectric thin film layers forms on the first metallic layer. The light source provided by the light source unit will become a light signal, after the light passes through the fiber sensing unit. The optical sensor transforms the light signal into a corresponding electric signal, for the usage of the computing and displaying unit.
摘要:
A microfluidic detection device is disclosed, which includes a porous membrane, a wicking pad, and an optical sensor. The porous membrane has a first end and an opposite second end, and the first end has a sample-loading area for receiving sample molecules. The wicking pad is connected with the second end of the porous membrane to move the sample molecules from the sample-loading area of the porous membrane to the second end thereof. The optical sensor has a detection zone which faces the porous membrane for sensing the sample molecules. Also, a method for detecting molecules is disclosed, which uses the aforesaid device. The method and the device can achieve the purpose of real-time detection and fast-screening for molecules.
摘要:
A method for real-timely monitoring thickness change of a coating film is disclosed. In the method, a coating module having a chamber and a film thickness-monitoring module containing an SPR optical fiber sensor, a light source, a light-receiving detector, and optical fibers are first provided. The optical fibers are used to connect the SPR optical fiber sensor with the light source and the light-receiving detector. The SPR optical fiber sensor has a sensing area and is arranged in the chamber. The light source provides the SPR optical fiber sensor with light. Then, a substrate is put into the chamber. While coating process is performed on the substrate, a film is also formed on the sensing area of the SPR optical fiber sensor. The light-receiving detector receives signals output from the sensing area of the SPR optical fiber sensor and then outputs signals of light-intensity change.
摘要:
A phototherapy patch is disclosed, which includes: an adhesive layer, having a first surface and an opposite second surface; a pharmaceutical drug layer, disposed on the first surface of the adhesive layer; and a spontaneous emission layer, disposed over the pharmaceutical drug layer and capable of emitting therapeutic light by light illumination or a chemical reaction. Accordingly, the phototherapy patch according to the present invention has no power supply disposed therein, and thereby is suitable to be manufactured as a particularly thin and thus inconspicuous device.
摘要:
A method for real-timely monitoring thickness change of a coating film is disclosed. In the method, a coating module having a chamber and a film thickness-monitoring module containing an SPR optical fiber sensor, a light source, a light-receiving detector, and optical fibers are first provided. The optical fibers are used to connect the SPR optical fiber sensor with the light source and the light-receiving detector. The SPR optical fiber sensor has a sensing area and is arranged in the chamber. The light source provides the SPR optical fiber sensor with light. Then, a substrate is put into the chamber. While coating process is performed on the substrate, a film is also formed on the sensing area of the SPR optical fiber sensor. The light-receiving detector receives signals output from the sensing area of the SPR optical fiber sensor and then outputs signals of light-intensity change.
摘要:
Disclosed is a photo-stimulation method and device. The method includes the following steps: providing a light-emitting diode (LED) illuminant which is a yellow, red, or blue LED; and illuminating a subject by the LED illuminant to promote collagen synthesis, to suppress microbial growth, or to inhibit melanin synthesis, wherein the yellow LED is in an illuminance range from 1,000 to 3,500 lux, the red LED is in an illuminance range from 6,000 to 9,500 lux, and the blue LED is in an illuminance range from 3,000 to 7,000 lux.