Abstract:
A MEMS chip includes a cap layer and a composite device layer. The cap layer includes a substrate. The substrate has a first region and a second region, wherein the first region includes plural first trenches and the second region has plural second trenches. The first region has a first etch pattern density and the second region has a second etch pattern density, wherein the first etch pattern density is higher than the second etch pattern density to form chambers of different pressures.
Abstract:
The invention provides an MEMS device. The MEMS device includes: a substrate, a proof mass, a spring, a spring anchor, a first electrode anchor, and a second electrode anchor, a first fixed electrode and a second fixed electrode. The proof mass is connected to the substrate through the spring and the spring anchor. The proof mass includes a hollow structure inside, and the spring anchor, the first electrode anchor, and the second electrode anchor are located in the hollow structure. The proof mass and the first fixed electrode form a first capacitor, and the proof mass and the second fixed electrode form a second capacitor. There is neither any portion of the proof mass nor any portion of any fixing electrode located between the first electrode anchor, second electrode anchor, and the spring anchor.
Abstract:
The invention provides an MEMS device. The MEMS device includes: a substrate, a proof mass, a spring, a spring anchor, a first electrode anchor, and a second electrode anchor, a first fixed electrode and a second fixed electrode. The proof mass is connected to the substrate through the spring and the spring anchor. The proof mass includes a hollow structure inside, and the spring anchor, the first electrode anchor, and the second electrode anchor are located in the hollow structure. The proof mass and the first fixed electrode form a first capacitor, and the proof mass and the second fixed electrode form a second capacitor. There is neither any portion of the proof mass nor any portion of any fixing electrode located between the first electrode anchor, second electrode anchor, and the spring anchor.
Abstract:
The invention provides a micro-electro-mechanical system (MEMS) module, which includes a MEMS die stacked on an electronic circuit die. The electronic circuit die includes a substrate, the substrate including at least one through-silicon via (TSV) penetrating through the substrate; and at least one electronic circuit. The electronic circuit includes a circuit region, and a signal transmission layer directly connecting the TSV. At least one wire is connected between a middle part of the MEMS die and the TSV. There is no signal communication at the interfacing location where the MEMS die is stacked on and bonded with the electronic circuit die.
Abstract:
The invention provides a micro-electro-mechanical system (MEMS) module, which includes a MEMS die stacked on an electronic circuit die. The electronic circuit die includes a substrate, the substrate including at least one through-silicon via (TSV) penetrating through the substrate; and at least one electronic circuit. The electronic circuit includes a circuit region, and a signal transmission layer directly connecting the TSV. At least one wire is connected between a middle part of the MEMS die and the TSV. There is no signal communication at the interfacing location where the MEMS die is stacked on and bonded with the electronic circuit die.
Abstract:
A MEMS chip includes a cap layer and a composite device layer. The cap layer includes a substrate. The substrate has a first region and a second region, wherein the first region includes plural first trenches and the second region has plural second trenches. The first region has a first etch pattern density and the second region has a second etch pattern density, wherein the first etch pattern density is higher than the second etch pattern density to form chambers of different pressures.
Abstract:
A method of manufacturing a suspension structure including providing a substrate, forming a first photoresist pattern on the substrate, heating the first photoresist pattern to harden it as a sacrificial layer, forming a second photoresist pattern on the substrate and the sacrificial layer, the second photoresist pattern exposing a part of the substrate and the sacrificial layer, forming a structure layer on the substrate, the second photoresist pattern, and the sacrificial layer, performing a lift off process to remove the second photoresist pattern and the structure layer above the second photoresist pattern, and performing a dry etching process to remove the sacrificial layer in order to make the structure layer become the suspension structure.
Abstract:
A method of manufacturing a suspension structure including providing a substrate, forming a hole and a sacrificial layer filling the hole on the substrate, forming a patterned photoresist layer on the substrate and the sacrificial layer, the patterned photoresist layer exposing a part of the substrate and the sacrificial layer, forming a structure layer on the substrate, the patterned photoresist layer, and the sacrificial layer, performing a lift off process to remove the patterned photoresist layer and the structure layer above the photoresist pattern, and performing a dry etch process to remove the sacrificial layer in order to make the structure layer and the hole become the suspension structure and the chamber.
Abstract:
A package structure and a packaging method for manufacturing the package structure are provided. The package structure comprises a cover wafer, a device wafer and a bonding material. The cover wafer has an optical element, and a surface of the cover wafer is defined with a height difference that is greater than 20 micrometers. The bonding material has a width and continuously surrounds the optical device, and is disposed between the cover wafer and the device wafer, in which the width is between 10 micrometers and 150 micrometers. The bonding material hermetically bonds the cover wafer and the device wafer to make a leakage rate of the package structure less than 5e−8 atm-cc/sec.
Abstract:
A method of manufacturing a suspension structure including providing a substrate, forming a first photoresist pattern on the substrate, heating the first photoresist pattern to harden it as a sacrificial layer, forming a second photoresist pattern on the substrate and the sacrificial layer, the second photoresist pattern exposing a part of the substrate and the sacrificial layer, forming a structure layer on the substrate, the second photoresist pattern, and the sacrificial layer, performing a lift off process to remove the second photoresist pattern and the structure layer above the second photoresist pattern, and performing a dry etching process to remove the sacrificial layer in order to make the structure layer become the suspension structure.