Abstract:
The present invention is directed to a flashing control method for a digital camera. Indices respectively corresponding to sensitivity values are firstly determined. Subsequently, main-flash intensities are respectively obtained with respect to the sensitivity values such that their target brightness values are substantially the same after exposure, thereby constructing an energy table. Further, a predetermined preflash is fired to obtain a corresponding preflash brightness value with respect to each distinct distance. Main-flash indices are then respectively obtained according to maximum main-flash intensity and the energy table with respect to the distinct distances such that the target brightness values are substantially the same after exposure, thereby constructing a preflash table. During picture capturing, the main-flash intensity is obtained according to the preflash brightness value and the preflash table.
Abstract:
A thin film etching method is provided, which is used for manufacturing semiconductor device or thin film transistor (TFT) array and through which no undercut may be presented or a good after-etching shape may be achieved with respect to a thin film thus etched. The thin film etching method is performed in a two-stage manner by an etchant and between the two stages a photoresist removing process is inserted where another etchant is used. With execution of the photoresist removing process, the thin film may have an increased contact area with the etchant. As such, any undercut or undesired after-etching shape existed in the thin film etched by the prior art may be eliminated or improved.
Abstract:
A method of automatically calibrating a visual parameter, such as luminance or contrast, for an imaging device is disclosed. A ratio of visual parameter difference to lens position difference between two predetermined lens positions is pre-determined for a predetermined focal length. A target visual parameter is then obtained according to the pre-determined ratio, a current visual parameter and lens position difference between a current lens position and a target lens position. Finally, the current visual parameter is updated by the target visual parameter in an automatic mode.
Abstract:
A stepper includes a base frame, two swing arms, two hydraulic cylinders and an adjustment assembly. Each of the swing arms is mounted pivotally on the base frame at one end and carries a pedal on the other end. Each of the hydraulic cylinders is mounted pivotally on one of the pedals at one end and on the base frame at the other end. The adjustment assembly is disposed on the base frame and permits adjustments in the angular displacement of the pedals.
Abstract:
A triaxial driving device for electrodischarge machine tools having a three-liners-axes mechanism and an electrode tool and has a connecting mount, a first axial rotator, a base, a supporting arm, a second axial rotator, a third axial rotator and an electrode holder. The connecting mount is connected securely to the three-liners-axes mechanism. The first axial rotator is mounted in the connecting mount and has a rotating head. The base is connected securely to the rotating head of the first axial rotator and has a space. The supporting arm is rotatably mounted in the space of the base and has a connecting frame. The second axial rotator is securely connected to the base and the supporting arm and has a rotating head. The third axial rotator is connected to the supporting arm and has a rotating head. The electrode holder is connected to the third axial rotator and the electrode tool.