摘要:
A method for forming a semiconductor structure includes forming a dielectric layer over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is then formed and a single polishing operation removes the seed layer and conductive layer.
摘要:
A method for forming a semiconductor structure includes forming a dielectric layer over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is then formed and a single polishing operation removes the seed layer and conductive layer.
摘要:
A semiconductor structure is provided and includes a dielectric layer disposed over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is disposed in the opening.
摘要:
A semiconductor structure is provided and includes a dielectric layer disposed over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is disposed in the opening.
摘要:
A method for producing a semiconductor-device having an electrical interconnect. The method produces having an improved barrier layer between the interconnect conductor and the dielectric material in which the interconnect recess is formed. A dielectric layer is formed on top of a wafer substrate having at least one contact region. An interconnect for servicing the contact region is fabricated by forming an interconnect recess and then depositing a primary barrier layer of tantalum nitride and subjecting it to a re-sputtering operation. A film layer of tantalum is then deposited and re-sputtered. Following this operation, a seed layer is formed, and then a conductor is used to fill the interconnect recess. Planerizing the surface of the wafer so that further fabrication may be performed may complete the process.
摘要:
A semiconductor device. The semiconductor device includes a substrate, a dielectric layer formed thereon, an opening formed in the dielectric layer, a first barrier layer overlying the sidewall of the opening, a second barrier layer overlying the first barrier layer and the bottom of the opening, and a conductive layer filled into the opening. The invention also provides a method of fabricating the semiconductor device.
摘要:
A semiconductor device is disclosed. The device includes a substrate; a first metal layer overlying the substrate; a dielectric layer overlying the first metal layer; and a second metal layer overlying the dielectric layer, wherein the first metal layer comprises: a first body-centered cubic lattice metal layer; a first underlayer, underlying the first body-centered cubic lattice metal layer, wherein the first underlayer is metal of body-centered cubic lattice and includes titanium (Ti), tungsten (W), molybdenum (Mo) or niobium (Nb); and a first interface of body-centered cubic lattice between the first body-centered cubic lattice metal layer and the first underlayer.
摘要:
A semiconductor device is disclosed. The device includes a substrate, a first metal layer, a dielectric layer, and a second metal layer. The first metal layer comprises a body-centered cubic lattice metal, and overlies the substrate. The dielectric layer overlies the first metal layer. The second metal layer overlies the dielectric layer.
摘要:
A method of forming a metal-filled opening in a semiconductor or other submicron device substrate includes forming a conductive bulk layer over the substrate surface and in the opening, wherein the conductive bulk layer has a first grain size. A conductive cap layer is formed over the conductive bulk layer, the conductive cap layer having a second grain size that is substantially smaller than the first grain size. At least one of the conductive bulk and cap layers are then planarized to form a planar surface that is substantially coincident with the substrate surface.
摘要:
A method for forming a copper dual damascene with improved copper migration resistance and improved electrical resistivity including providing a semiconductor wafer including upper and lower dielectric insulating layers separated by a middle etch stop layer; forming a dual damascene opening extending through a thickness of the upper and lower dielectric insulating layers wherein an upper trench line portion extends through the upper dielectric insulating layer thickness and partially through the middle etch stop layer; blanket depositing a barrier layer including at least one of a refractory metal and refractory metal nitride to line the dual damascene opening; carrying out a remote plasma etch treatment of the dual damascene opening to remove a bottom portion of the barrier layer to reveal an underlying conductive area; and, filling the dual damascene opening with copper to provide a substantially planar surface.