Abstract:
The present invention provides a polyolefin-based composite resin spherical particle that gives a coating film having a matte appearance, a soft feeling, and excellent scratch resistance by being used for a coating material. The present invention also provides a coating composition containing the polyolefin-based composite resin spherical particle and a coating resin, and a coated article obtained by applying the coating composition to a substrate.The invention relates to a polyolefin-based composite resin spherical particle, which is a spherical particle obtained by mixing 100 parts by mass of a polyolefin-based resin, 40 to 1,500 parts by mass of water, and 3 to 30 parts by mass of an ethylene oxide/propylene oxide copolymer having a weight average molecular weight of 4,000 to 30,000 to prepare a mixture, emulsifying the mixture at a temperature of the highest melting point of the polyolefin-based resin or higher, and cooling the mixture from a temperature at least 25° C. higher than the highest crystallization temperature of the polyolefin-based resin to a temperature at least 25° C. lower than the lowest crystallization temperature of the polyolefin-based resin at a cooling speed of 0.2° C./min or more, wherein the polyolefin-based resin is a composite resin containing 5 to 70% by mass of a partially saponified ethylene/vinyl acetate copolymer.
Abstract:
The present invention provides a polyolefin-based composite resin spherical particle that gives a coating film having a matte appearance, a soft feeling, and excellent scratch resistance by being used for a coating material. The present invention also provides a coating composition containing the polyolefin-based composite resin spherical particle and a coating resin, and a coated article obtained by applying the coating composition to a substrate.The invention relates to a polyolefin-based composite resin spherical particle, which is a spherical particle obtained by mixing 100 parts by mass of a polyolefin-based resin, 40 to 1,500 parts by mass of water, and 3 to 30 parts by mass of an ethylene oxide/propylene oxide copolymer having a weight average molecular weight of 4,000 to 30,000 to prepare a mixture, emulsifying the mixture at a temperature of the highest melting point of the polyolefin-based resin or higher, and cooling the mixture from a temperature at least 25° C. higher than the highest crystallization temperature of the polyolefin-based resin to a temperature at least 25° C. lower than the lowest crystallization temperature of the polyolefin-based resin at a cooling speed of 0.2° C./min or more, wherein the polyolefin-based resin is a composite resin containing 5 to 70% by mass of a partially saponified ethylene/vinyl acetate copolymer.
Abstract:
Method for manufacturing organic EL element including anode, hole injection layer, buffer layer, light-emitting layer, and cathode, layered on substrate in the stated order, and banks defining a light-emission region, and having excellent light-emission characteristics, due to the hole injection layer having excellent hole injection efficiency, being a tungsten oxide layer including an oxygen vacancy structure, formed under predetermined conditions to have an occupied energy level within a binding energy range from 1.8 eV to 3.6 eV lower than a lowest binding energy of a valence band, and after formation, subjected to atmospheric firing at a temperature within 200° C.-230° C. inclusive for a processing time of 15-45 minutes inclusive to have increased film density and improved dissolution resistance against an etching solution, a cleaning liquid, etc., used in a bank forming process.
Abstract:
A battery apparatus includes a row battery group including a plurality of series-connected row batteries including one or more battery cells; a plurality of battery management sections, corresponding to the individual row batteries, for managing the battery statuses of the corresponding row batteries; a central management section for granting unique identification information to the individual battery management sections and acquiring information about the battery statuses of the row batteries from the respective battery management sections for management; second communication lines with which the plurality of battery management sections are daisy-chained; a first communication line with which, of the plurality of battery management sections, the battery management section located at one end is connected to the central management section; and a plurality of connection switching sections, provided in the individual second communication lines between the battery management sections, for switching the connection and disconnection between the battery management sections.
Abstract:
An embodiment of the present disclosure provides a structure that contributes to increasing the capacity density. A secondary cell according to an embodiment of the present disclosure includes a plurality of periodic unit structures that are arranged on a first surface. Each of those periodic unit structures includes a positive electrode layer and a negative electrode layer, each of which projects away from the first surface, and a solid electrolyte interposed between the positive electrode and negative electrode layers.
Abstract:
A battery apparatus includes a row battery group including a plurality of series-connected row batteries including one or more battery cells; a plurality of battery management sections, corresponding to the individual row batteries, for managing the battery statuses of the corresponding row batteries; a central management section for granting unique identification information to the individual battery management sections and acquiring information about the battery statuses of the row batteries from the respective battery management sections for management; second communication lines with which the plurality of battery management sections are daisy-chained; a first communication line with which, of the plurality of battery management sections, the battery management section located at one end is connected to the central management section; and a plurality of connection switching sections, provided in the individual second communication lines between the battery management sections, for switching the connection and disconnection between the battery management sections.
Abstract:
A control system of a vehicle including an engine and an automatic transmission operable to form one of a plurality of gear positions set according to running conditions of the vehicle, and a method of controlling the vehicle are provided. In the control, the rotational speed of an input-side rotary shaft of a shifting mechanism of the transmission is detected, and the vehicle is controlled so that, when an execution condition that one of the gear positions set according to the running conditions is maintained and the rotational speed of the input-side rotary shaft has increased to be higher than a rotational speed corresponding to the set gear position is satisfied, the vehicle is brought into running conditions that will eliminate a state in which air is present in the hydraulic fluid supplied from an oil supply device.
Abstract:
The vehicle start determining unit determines a vehicle starting state based on a vehicle speed and an accelerator pedal press-down degree. When the vehicle starting state is determined, the target slip value determining unit determines a target slip rotational speed based on the actual accelerator pedal press-down degree. In receipt of a signal indicating initiation of the control upon the previous slip control, the running history storing unit stores a change of the vehicle speed over time after the relevant timing, and sets a running history flag to an on state when detecting that the vehicle speed has exceeded a prescribed threshold value. In receipt of the target slip rotational speed and the running history flag, if the running history flag is in the on state, the lock-up clutch control unit carries out the slip control according to the target slip rotational speed.
Abstract:
An organic EL panel comprises anodes, a cathode, organic light-emitting layers, and first functional layers each including a hole injection layer and a hole transport layer. The hole injection layer of each of the R, G, and B colors is made of only a metal oxide including tungsten oxide, and has a thickness of 5 nm to 40 nm. At least one of the hole injection layers has a thickness different from the other hole injection layers. The hole transport layers of the R, G, and B colors are equivalent in thickness. The organic light-emitting layers of the R, G, and B colors are equivalent in thickness.
Abstract:
An organic EL element has an anode, a cathode, a hole injection layer and at least one functional layer disposed between the anode and the cathode. The at least one functional layer contains an organic material. Holes are injected into the functional layer from the hole injection layer, which contains a tungsten oxide. A Ultraviolet Photoelectron Spectroscopy (UPS) spectrum obtained from a UPS measurement has a protrusion near a Fermi surface and within a region corresponding to a binding energy range lower than a top of the valence band. The tungsten oxide contained in the hole injection layer satisfies a condition, determined from an X-ray Photoelectronic Spectroscopy measurement, that a ratio in a number density of atoms other than tungsten and oxygen atoms to the tungsten atoms does not exceed approximately 0.83.