摘要:
An object of the present invention is to manufacture a long transparent conductive film comprising a transparent film substrate and a crystalline indium composite oxide film formed on the transparent film substrate. The manufacturing method of the present invention includes an amorphous laminate formation step of forming an amorphous film of an indium composite oxide containing indium and a tetravalent metal on the long transparent film substrate with a sputtering method, and a crystallization step of continuously feeding the long transparent film substrate on which the amorphous film is formed into a furnace and crystallizing the amorphous film. The temperature inside the furnace in the crystallization step is preferably 170 to 220° C. The change rate of the film length in the crystallization step is preferably +2.5% or less.
摘要:
The present invention is a transparent conductive film having a flexible transparent base and a transparent conductive layer made of a crystalline conductive metal oxide that is formed on one surface of the flexible transparent base, in which the thickness of the flexible transparent base is 80 μm or less, and the difference H1−H2 between the dimensional change rate H1 when the transparent conductive film is heated at 140° C. for 30 minutes and the dimensional change rate H2 when the transparent conductive layer is removed from the transparent conductive film by etching and the transparent conductive film is heated at 140° C. for 30 minutes is −0.02 to 0.043%. Because of that, the level difference at the pattern boundary when the film is assembled into a touch panel, etc. is decreased and the deterioration of the appearance can be also suppressed.
摘要:
An object of the present invention is to manufacture a long transparent conductive film comprising a transparent film substrate and a crystalline indium composite oxide film formed on the transparent film substrate. The manufacturing method of the present invention includes an amorphous laminate formation step of forming an amorphous film of an indium composite oxide containing indium and a tetravalent metal on the long transparent film substrate with a sputtering method, and a crystallization step of continuously feeding the long transparent film substrate on which the amorphous film is formed into a furnace and crystallizing the amorphous film. The indium composite oxide preferably contains more than 0 parts by weight and 15 parts by weight or less of the tetravalent metal based on 100 parts by weight of the total of indium and the tetravalent metal.
摘要:
The present invention is a transparent conductive film having a flexible transparent base and a transparent conductive layer made of a crystalline conductive metal oxide that is formed on one surface of the flexible transparent base, in which the thickness of the flexible transparent base is 80 μm or less, and the difference H1−H2 between the dimensional change rate H1 when the transparent conductive film is heated at 140° C. for 30 minutes and the dimensional change rate H2 when the transparent conductive layer is removed from the transparent conductive film by etching and the transparent conductive film is heated at 140° C. for 30 minutes is −0.02 to 0.043%. Because of that, the level difference at the pattern boundary when the film is assembled into a touch panel, etc. is decreased and the deterioration of the appearance can be also suppressed.
摘要:
The transparent conductive film of the present invention is a transparent conductive film, comprising: a transparent film substrate; a patterned transparent conductive layer formed on one side of the transparent film substrate; and a colored layer provided on at least one of an opposite side of the transparent conductive layer from the transparent film substrate and an opposite side of the transparent film substrate from the transparent conductive layer, wherein the colored layer has an average absorptance of from 35% to 90% for light in the wavelength range of from 380 nm to 780 nm.
摘要:
A method of continuously subjecting an elongated substrate to vacuum film formation is disclosed. The method comprises the steps of: feeding a first substrate from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber; degassing the first substrate; forming a film of a second material on the first substrate, in a second film formation chamber; and rolling up the first substrate in the second roll chamber, thereby producing the first substrate, and comprises similar steps to produce a second substrate. In advance of producing the first substrate with the second material film, the first cathode electrode of the first film formation chamber is removed from the first film formation chamber, and, in advance of producing the second substrate with the first material film, the second cathode electrode of the second film formation chamber is removed from the second film formation chamber.
摘要:
The present invention provides a transparent conductive film in which the difference in visibility between the pattern portion and the pattern opening portion is kept small even when a transparent conductive layer is patterned. The transparent conductive film has a first dielectric layer, a second dielectric layer, and a transparent conductive layer in this order on a transparent film substrate, a thickness d21 of the first dielectric layer is larger than a thickness d22 of the second dielectric layer, the thickness d21 of the first dielectric layer is 8 to 40 nm and the thickness d22 of the second dielectric layer is 5 to 25 nm, and a difference between the thickness d21 of the first dielectric layer and the thickness d22 of the second dielectric layer, d21-d22, is 3 to 30 nm.
摘要:
The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a direction from the first roll chamber toward a second roll chamber, using a first surface as a surface for film formation; degassing the fed substrate; forming a first material film on the first surface of the degassed substrate in a first film formation chamber; forming a second material film on the first material film in a second film formation chamber; taking up the substrate in a roll form in the second roll chamber, the substrate having the material films formed thereon; unrolling and feeding the taken up substrate from the first roll chamber in the direction, using a second surface opposite the first surface of the substrate as a surface for film formation; and repeating all the above treatments.
摘要:
The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber, using a first surface as a surface for film formation; degassing the substrate fed in the first direction; forming a second material film on the first surface of the substrate in a second film formation chamber; taking up the substrate in a roll form in the second roll chamber, the substrate having the second material film formed thereon; unrolling and feeding the substrate from the second roll chamber in a second direction from the second roll chamber toward the first roll chamber; forming a first material film on the second material film in a first film formation chamber; taking up the substrate in a roll form in the first roll chamber.
摘要:
The film formation method comprises the steps of: unrolling and feeding an elongated substrate wound in a roll form from a first roll chamber in a first direction from the first roll chamber toward a second roll chamber; degassing the fed substrate; forming a first material film on a first surface in a first film formation chamber; guiding the substrate having the first material film formed thereon to a second film formation chamber in a second direction from the second roll chamber toward the first roll chamber; forming, in the second film formation chamber, a second material film on a second surface opposite the first surface of the substrate when it is being guided in the second direction; taking up, in a third roll chamber provided between the first roll chamber and the second roll chamber, the substrate in a roll state.