摘要:
A separator includes a gas flow path forming body, which includes a substrate made of stainless steel, a resin layer arranged on the substrate, and a conductive layer arranged on the surface of the resin layer. The resin layer contains a filler, which has conductivity and greater hardness than an oxide film of the substrate. The conductive layer contains graphite. The filler extends through the oxide film of the substrate and contacts the base material.
摘要:
A separator includes a gas flow path forming body, which includes a substrate made of stainless steel, a resin layer arranged on the substrate, and a conductive layer arranged on the surface of the resin layer. The resin layer contains a filler, which has conductivity and greater hardness than an oxide film of the substrate. The conductive layer contains graphite. The filler extends through the oxide film of the substrate and contacts the base material.
摘要:
A separator is provided that has a metal substrate and a conductive resin layer on the surface of the metal substrate. The conductive resin layer contains a resin and a conductive substance dispersed in the resin. The separator is configured such that the proportion of the conductive substance to the resin increases continuously from the metal substrate toward the surface of the separator.
摘要:
A separator is provided that has a metal substrate and a conductive resin layer on the surface of the metal substrate. The conductive resin layer contains a resin and a conductive substance dispersed in the resin. The separator is configured such that the proportion of the conductive substance to the resin increases continuously from the metal substrate toward the surface of the separator.
摘要:
A coating forming device forms a coating on a substrate, which is a component of a fuel cell separator, by thermal transfer. The device includes a lower die and an upper die each having a heating portion. A pressing surface of the lower die and a pressing surface of the upper die are both formed by a heat-resistant elastic member.
摘要:
A fuel cell stack includes a plurality of cells that are stacked in a stacking direction. Each cell includes a power generating body and a pair of separators. The separators respectively are arranged on opposite surfaces of the power generating body in the stacking direction. Each separator includes a first surface and a second surface. A titanium nitride layer is formed on the first surface, and a conductive carbon layer is formed on the titanium nitride layer. A titanium nitride layer is formed on the second surface. Each separator is in contact with the power generating body via the titanium nitride layer and the carbon layer on the first surface and is in contact with one of the separators of an adjacent cell via the titanium nitride layer on the second surface.
摘要:
A fuel cell stack includes a plurality of cells that are stacked in a stacking direction. Each cell includes a power generating body and a pair of separators. The separators respectively are arranged on opposite surfaces of the power generating body in the stacking direction. Each separator includes a first surface and a second surface. A titanium nitride layer is formed on the first surface, and a conductive carbon layer is formed on the titanium nitride layer. A titanium nitride layer is formed on the second surface. Each separator is in contact with the power generating body via the titanium nitride layer and the carbon layer on the first surface and is in contact with one of the separators of an adjacent cell via the titanium nitride layer on the second surface.
摘要:
A manufacturing method of an anti-corrosive multi-layered structure material having an anti-corrosive non-metallic surface layer formed on a metallic substrate layer, wherein non-electrolytic plating of an anti-corrosive metal different in ionization property from the surface metal of the metallic substrate layer is carried out on the surface of the non-metallic surface layer so that the anti-corrosive metal is substituted for the surface metal of the metallic substrate layer through fine pores of the non-metallic surface layer and precipitated only in the fine pores of the non-metallic surface layer without causing useless precipitation of the anti-corrosive metal on the surface of the non-metallic surface layer.
摘要:
An electrolyte membrane on the inside of annular frames with an anode-side electrode catalyst layer, a first gas diffusion layer and a first gas flow channel-forming body stacked on top of the membrane. An electrode catalyst layer, a second gas diffusion layer and a second gas flow channel-forming body are stacked on the underside. Frames have a supply channel supplying fuel gas to the gas flow channel in the first gas flow channel-forming body, a discharge channel discharges the fuel gas. An overhang part that extends outward is on the outer peripheral edge of the first channel-forming body to overlap a flange part of the frame beyond the outer peripheral edge of the anode-side electrode catalyst layer. Penetration of seeping water can be prevented by retaining the seeping water in the overhang part.
摘要:
An electrolyte membrane on the inside of annular frames with an anode-side electrode catalyst layer, a first gas diffusion layer and a first gas flow channel-forming body stacked on top of the membrane. An electrode catalyst layer, a second gas diffusion layer and a second gas flow channel-forming body are stacked on the underside. Frames have a supply channel supplying fuel gas to the gas flow channel in the first gas flow channel-forming body, a discharge channel discharges the fuel gas. An overhang part that extends outward is on the outer peripheral edge of the first channel-forming body to overlap a flange part of the frame beyond the outer peripheral edge of the anode-side electrode catalyst layer. Penetration of seeping water can be prevented by retaining the seeping water in the overhang part.