摘要:
An ultrasonic inspection and imaging instrument is characterized by storing reduced image examples (images by means of reduced image display data obtained by scaling down picture display data) of an ultrasonic measurement picture beforehand, together with measurement conditions at the time the measurement picture is obtained prior to a scale-down imaging process. When the measurement is started or the measurement conditions are otherwise changed, the measurement conditions are set as those obtained from the measurement picture prior to the scale-down processing with one of the reduced image examples thus selected as an index while a list of image examples is indicated on a display and read from a memory unit for ultrasonic measuring purposes. When a reduced image example or what is similar to the example desired by an operator is selected, proper measurement conditions are automatically set in the ultrasonic inspection and imaging instrument. When the operator wants to change or switch the measurement picture, moreover, he/she is able to make ultrasonic measurement on confirming what the subsequent image is like or what an image is desired to be selected by means of the reduced image example beforehand.
摘要:
An ultrasonic inspection and imaging instrument scans an object under examination, the object having an inspection plane at a predetermined depth, in the direction slanted to the depth (slant scanning), in such a way as to cause rectilinear scanning as viewed from the plane. Measured data on a peak value corresponding to each measurement point obtained from the slant scanning are displayed in the form of a picture on the screen of a display relative to each measurement point. The image displayed on the picturee at that time is most clearly demonstrated, provided an image portion in the vicinity of a test portion corresponding to a test surface is brought into focus in the depth direction. An operator selects the image portion clearly indicated out of the picture displayed on the display, and inputs the position of the image thereon to an input unit, whereby an image processor bases the positional information about the display data thus fed and the relevant information indicating the positional relationship in the depth direction on obtaining the position of the probe in the depth direction when the measured value resulting from the image is collected. The image processor positions the probe there, so that the probe is automatically focused on the test surface.
摘要:
In an ultrasonic inspection and imaging instrument, a pulse generator and a burst wave generator are provided in association with the activation of an ultrasonic probe by the pulse generator and in response to a measurement value obtained from a signal reception circuit portion. A first gate position is obtained with regard to an inspection portion in a sample, and then a second gate position for a burst wave measurement is set by correcting the first gate position. The burst wave measurement is performed by activating the burst wave generator.
摘要:
A scanning range of an object under examination is divided into m pieces (m is an integer equal to or more than 2) in a subscanning direction. One measurement condition or one parameter is set in m steps, and an ultrasonic measurement is performed on the object under examination while allotting successively the m-stepped measurement conditions or the m-stepped parameters to the respective scanning regions divided in the subscanning direction. A plurality of measurement images obtained under the m-stepped measurement conditions are displayed so as to permit comparison on a screen, and one of the m-stepped measurement conditions or m-stepped parameters which corresponds to an image selected from the displayed screen is set as the measurement condition.
摘要:
A PLL comprises a current-controlled oscillator (18) for generating an output clock signal based on a current signal generated based on a phase difference between a reference clock signal and a feedback clock signal, a current source (28), and an initialization switch (26) for performing an open/close operation based on the initialization signal, the initialization switch being inserted in series to an input terminal of the current-controlled oscillator (18) and the current source (28).
摘要:
A PLL comprises a current-controlled oscillator (18) for generating an output clock signal based on a current signal generated based on a phase difference between a reference clock signal and a feedback clock signal, a current source (28), and an initialization switch (26) for performing an open/close operation based on the initialization signal, the initialization switch being inserted in series to an input terminal of the current-controlled oscillator (18) and the current source (28).
摘要:
The frequency modulation circuit includes: a phase shift section for receiving a multiphase clock signal composed of a plurality of clock signals having a predetermined phase difference therebetween and shifting the phase of the multiphase clock signal; a clock selection section for selecting a clock signal constituting the multiphase clock signal output from the phase shift section; and a modulation control section for controlling the phase shift section and the clock selection section so that a clock signal having a frequency different from the frequency of the multiphase clock signal input into the phase shift section is output from the clock selection section.
摘要:
A comparison period determiner (110) detects whether or not a change occurs in received data during a comparison period including a timing at which a rising edge of a reference clock occurs. A phase determiner (120) determines whether a rising edge of the received data is located before or after the reference clock and determines whether a falling edge of the received data is located before or after the reference clock, and outputs a first determination signal and a second determination signal indicating results of the respective determinations. A synchronous data generator (130) outputs a signal having a level depending on a result of the detection by the comparison period determiner (110) and an output of the phase determiner (120), as synchronous data, in synchronization with a synchronization clock.
摘要:
A comparison period detecting unit (11) defines, as a comparison period, a period between a rising edge of a first clock signal and a rising edge of a second clock signal, and detects the presence or absence of transition of a data signal during the comparison period. A phase relationship detecting unit (12) detects a phase relationship between the data signal and a reference clock signal, and outputs a result of detection of the phase relationship when the comparison period detecting unit (11) detects transition of the data signal during the comparison period.