摘要:
A corrosion inhibiting structure includes a mineral tubule having a first end, a second end, and a lumen extending from the first end to the second end. The lumen terminates in a first opening at the first end and a second opening at the second end. The corrosion inhibiting structure also includes an anticorrosion deposit disposed within the lumen, and first and second precipitate stoppers covering the first and second openings, respectively. A coating composition includes a population of corrosion inhibiting structures and a coating material. A method of inhibiting corrosion includes loading anticorrosion agent deposits into lumens, forming stoppers at first and second openings by mixing loaded mineral tubules with a solution containing a predetermined concentration of transition metal ions, mixing the loaded mineral tubules having stoppers with a coating material to form a composite material, and applying the composite material to a metal surface.
摘要:
A corrosion inhibiting structure includes a mineral tubule having a first end, a second end, and a lumen extending from the first end to the second end. The lumen terminates in a first opening at the first end and a second opening at the second end. The corrosion inhibiting structure also includes an anticorrosion deposit disposed within the lumen, and first and second precipitate stoppers covering the first and second openings, respectively. A coating composition includes a population of corrosion inhibiting structures and a coating material. A method of inhibiting corrosion includes loading anticorrosion agent deposits into lumens, forming stoppers at first and second openings by mixing loaded mineral tubules with a solution containing a predetermined concentration of transition metal ions, mixing the loaded mineral tubules having stoppers with a coating material to form a composite material, and applying the composite material to a metal surface.
摘要:
A method is provided for making “smart” paper and “smart” microfibers by means of nanotechnology layer-by-layer techniques. The method comprises forming an aqueous pulp of lignocellulose fibers and nanocoating it by alternatively adsorbing onto the fibers multiple consecutively-applied layers of organized ultra thin and oppositely-charged polyelectrolytes, at least one of which is an electrically conductive polymer or nanoparticle (or a magnetically active polymer or nanoparticle, or an optically active polymer or nanoparticle), and another one of which has a charge opposite of said electrically conductive polymer or nanoparticle (or magnetically active polymer or nanoparticle, or optically active polymer or nanoparticle), thereby making a modified aqueous pulp of electrically conductive (or magnetically active, or optically active) multi-layer nanocoated lignocellulose fibers. A finished paper is manufactured by drying sheets of the modified fibers and processing the dried sheets to make a smart paper having enhanced electrical conductivity, magnetic and/or optical properties.
摘要:
An augmented ceramic composite including aluminosilicate nanotubes may be added to a biocompatible polymer matrix. Aluminosilicate nanotubes have a surprisingly high biocompatibility, radio opaqueness, and suitability for storing therapeutic compounds for release over time. These surprising advantages make aluminosilicate nanotubes, such as halloysite nanotubes, a good candidate for use in various medical applications from bone and dental prosthetics to cancer treatment and prevention. Furthermore, unlike other additives, the addition of certain quantities of halloysite nanotubes increases the strength of the polymer matrix to which it is added.
摘要:
A method is provided for making “smart” paper and “smart” microfibers by means of nanotechnology layer-by-layer techniques. The method comprises forming an aqueous pulp of lignocellulose fibers and nanocoating it by alternatively adsorbing onto the fibers multiple consecutively-applied layers of organized ultra thin and oppositely-charged polyelectrolytes, at least one of which is an electrically conductive polymer or nanoparticle (or a magnetically active polymer or nanoparticle, or an optically active polymer or nanoparticle), and another one of which has a charge opposite of said electrically conductive polymer or nanoparticle (or magnetically active polymer or nanoparticle, or optically active polymer or nanoparticle), thereby making a modified aqueous pulp of electrically conductive (or magnetically active, or optically active) multi-layer nanocoated lignocellulose fibers; then draining the water out of the modified aqueous pulp to form sheets of smart microfibers. A finished paper is manufactured by drying the sheets of the nanocoated multi-layer fibers and processing the dried sheets to make a smart paper having enhanced electrical conductivity, magnetic and/or optical properties.
摘要:
A method is provided for manufacturing paper by means of layer-by-layer nanocoating techniques. The method comprises the sequential processing of an aqueous pulp of lignocellulose fibers which is first subjected to nanocoating by alternatively adsorbing onto the fibers multiple consecutively-applied layers of oppositely-charged nanoparticles, polymers and/or proteins thereby making a modified aqueous pulp of multi-layer nanocoated lignocellulose fibers, then draining the water out of the modified pulp to form sheets of multi-layer nanocoated fibers, and drying the formed sheets of multi-layer nanocoated fibers. The resulting dried sheets are then processed to make a finished paper that has superior physical strength and improved surface properties. In a preferred embodiment the starting aqueous pulp of lignocellulose fibers is divided into is separate portions which are separately nanocoated with opposite charges, and then blended to form a complex aggregate pulp of nanocoated fibers before draining and drying it. The method is particularly applicable to the treatment of broken (mill broke) recycled fibers in order to facilitate their usage in paper production.
摘要:
Nanoparticle compositions and methods are disclosed for the sustained release of small molecules, such as pharmaceutical compounds in vivo, for example ligand-lytic peptide conjugates. The construction of the nanoparticles helps to prevent self-aggregation of the molecules, and the consequent loss of effectiveness. The system employs layer-by-layer self-assembly of biocompatible polyelectrolyte layers, and layers of charged small molecules such as drug molecules, to form a multilayer nanoparticle in which the drug or other small molecule itself acts as one of the alternating charged layers in the multilayer assembly. The small molecules can then be released over time in a sustained manner. The LbL nano-assemblies can specifically target cancers, metastases, or other diseased tissues, while minimizing side effects.