摘要:
An apparatus for controlling an internal combustion engine that can estimate a quantity of heat generated is provided.An arithmetic processing unit 20 can calculate PVκ variable according to a crank angle θ and dPVκ/dθ as a rate of change in PVκ. For convenience' sake, a “crank angle at which dPVκ/dθ is a maximum while PVκ is increasing” is to mean a “crank angle at a combustion proportion of 50%” and be referred to also as “θCA50”. PVκ calculated for θCA50 is to be referred to also as “PVκCA50”. In addition, for convenience' sake, a difference between PVκ (which is zero in the embodiment as shown in FIGS. 3 and 4) and PVκCA50 at a start of combustion is also referred to as ΔPVκCA50. A total quantity of heat generated Q is assumed to be twice as much as a value of ΔPVκCA50.
摘要:
To accurately specify an EGR rate from an output value of an in-cylinder pressure sensor, a specifying method of an EGR rate in an internal combustion engine of the present invention acquires an output value of an in-cylinder pressure sensor at an intake stroke to calculate comparison data related to an in-cylinder pressure at the intake stroke from the acquired sensor output value. An output value of the in-cylinder pressure sensor at an exhaust stroke of the same cycle is also acquired to calculate comparison data related to the in-cylinder pressure at the exhaust stroke from the acquired sensor output value. Two comparison data are compared to specify the EGR rate of an air-fuel mixture provided for combustion from a difference between the values.
摘要:
To accurately specify an EGR rate from an output value of an in-cylinder pressure sensor, a specifying method of an EGR rate in an internal combustion engine of the present invention acquires an output value of an in-cylinder pressure sensor at an intake stroke to calculate comparison data related to an in-cylinder pressure at the intake stroke from the acquired sensor output value. An output value of the in-cylinder pressure sensor at an exhaust stroke of the same cycle is also acquired to calculate comparison data related to the in-cylinder pressure at the exhaust stroke from the acquired sensor output value. Two comparison data are compared to specify the EGR rate of an air-fuel mixture provided for combustion from a difference between the values.
摘要:
An apparatus for controlling an internal combustion engine that can estimate a quantity of heat generated is provided.An arithmetic processing unit 20 can calculate PVκ variable according to a crank angle θ and dPVκ/dθ as a rate of change in PVκ. For convenience' sake, a “crank angle at which dPVκ/dθ is a maximum while PVκ is increasing” is to mean a “crank angle at a combustion proportion of 50%” and be referred to also as “θCA50”. PVκ calculated for θCA50 is to be referred to also as “PVκCA50”. In addition, for convenience' sake, a difference between PVκ (which is zero in the embodiment as shown in FIGS. 3 and 4) and PVκCA50 at a start of combustion is also referred to as ΔPVκCA50. A total quantity of heat generated Q is assumed to be twice as much as a value of ΔPVκCA50.
摘要:
A control device for an internal combustion engine is provided, which can carry out favorable injection amount feedback control even when a fuel property changes. A cylinder internal pressure sensor (16) that detects a cylinder internal pressure is included. A cylinder internal fresh air amount is calculated based on the cylinder internal pressure detected by the cylinder internal pressure sensor (16) (100). Based on the cylinder internal pressure detected by the cylinder internal pressure sensor (16), an actual heating value is calculated (120). From the calculated cylinder internal fresh air amount, a target heating value in a predetermined excess air ratio is calculated (150). A comparison value of the actual heating value and the target heating value is fed back to a fuel injection amount so that the calculated actual heating value corresponds to the target heating value (160, 170).
摘要:
A control device for an internal combustion engine is provided, which can carry out favorable injection amount feedback control even when a fuel property changes. A cylinder internal pressure sensor (16) that detects a cylinder internal pressure is included. A cylinder internal fresh air amount is calculated based on the cylinder internal pressure detected by the cylinder internal pressure sensor (16) (100). Based on the cylinder internal pressure detected by the cylinder internal pressure sensor (16), an actual heating value is calculated (120). From the calculated cylinder internal fresh air amount, a target heating value in a predetermined excess air ratio is calculated (150). A comparison value of the actual heating value and the target heating value is fed back to a fuel injection amount so that the calculated actual heating value corresponds to the target heating value (160, 170).
摘要:
A liquid jetting apparatus includes: a head unit including a liquid jetting head, a regulating member arranged to sandwich the head unit from a nozzle array direction, a restriction mechanism configured to restrict the head unit from displacement in an orthogonal direction perpendicular to the nozzle array direction, and a landing position correction mechanism configured to correct position of landing the liquid jetted from the plurality of nozzles onto the medium in the orthogonal direction. The restriction mechanism restricts a portion of the head unit inside of outmost nozzle arrays in the orthogonal direction.
摘要:
A liquid ejection apparatus including: a head having: nozzles arranged in a nozzle-row direction; and ejection-energy applying portions; a drive IC for driving the ejection-energy applying portions; a control circuit board for controlling the drive IC; a wiring member on which the drive IC is mounted; and a support member for supporting the wiring member. The wiring member extends toward the control circuit board from a connection portion thereof connected to the ejection-energy applying portions, the wiring member having a first wiring portion extending in a first direction intersecting the nozzle-row direction and a second wiring portion extending in a second direction intersecting the first direction. The support member supports at least one of the first wiring portion and the second wiring portion, the at least one being located between the ejection-energy applying portions and the control circuit board.
摘要:
Disclosed is a control device, which controls an air-fuel ratio sensor that is mounted in an exhaust path of an internal-combustion engine. The air-fuel ratio sensor is capable of pumping oxygen in a gas. Normally (time t0-t1, time t3 or later), a positive voltage Vp1 is applied to a sensor element (FIG. 7A), and the air-fuel ratio is calculated (FIG. 7C) in accordance with a sensor current (FIG. 7B). A heater is driven after internal-combustion engine startup to heat the sensor element. In a process in which the sensor element temperature rises, a negative voltage Vm, which is oriented in a direction different from that of the positive voltage Vp1, is applied to the sensor element.
摘要:
A liquid jetting apparatus includes: a plurality of liquid jet heads each of which has a nozzle surface in which a plurality of nozzles are formed to align in one direction, a retention member which retains the plurality of liquid jet heads in a state of being arranged along one plane, a transport mechanism which transports a medium in a transport direction along the one plane, and a displacement mechanism which displaces the retention member in a specified direction toward one side along a direction intersecting the nozzle surfaces by curving the retention member or rotating the same in a rotation direction when the retention member extends due to temperature change on the one plane in an intersectant direction intersecting the transport direction.