摘要:
Light emitted from a light source is condensed and a sample is irradiated by the condensed beam by an optical system. The light emitted from the sample because of the irradiation is incident on a light detection unit via a wavelength selective optical device having different transmittances depending on wavelengths, a dispersive unit for spectrally resolving light, a wavelength range selection unit for selecting light having a wavelength in a prescribed wavelength range among the light resolved spectrally. A correction unit adjusts a light intensity signal output from the light detection unit based on at least one of a wavelength characteristics of the wavelength selective optical device and the light detection unit respectively.
摘要:
A confocal observation system, comprising, an image acquisition unit for acquiring optical cross sectional images of a three-dimensional specimen, a three-dimensional image construction unit for constructing a three-dimensional image from the optical cross sectional images acquired by the image acquisition unit, a specification unit for specifying a desired three-dimensional region in the three-dimensional image constructed by the three-dimensional image construction unit, and a region acquisition unit for acquiring a cross sectional region to be irradiated with excitation light or stimulation light based on the three-dimensional region specified by the specification unit, wherein the excitation light or the stimulation light irradiates a region in the three-dimensional specimen corresponding to the cross sectional region acquired by the region acquisition unit.
摘要:
A laser scanning microscope capable of quickly and accurately setting control values of control items for a microscope apparatus is provided. The control items and a time line are displayed along a vertical axis and a horizontal axis, respectively. The laser scanning microscope includes a graphical user interface configured to set the control values of the control items along the time line and a control unit configured to acquire luminance information of a specimen by irradiating the specimen with a laser beam in accordance with the control values set by the graphical user interface.
摘要:
A laser scanning microscope capable of quickly and accurately setting control values of control items for a microscope apparatus is provided. The control items and a time line are displayed along a vertical axis and a horizontal axis, respectively. The laser scanning microscope includes a graphical user interface configured to set the control values of the control items along the time line and a control unit configured to acquire luminance information of a specimen by irradiating the specimen with a laser beam in accordance with the control values set by the graphical user interface.
摘要:
A laser scanning microscope includes a culture vessel that accommodates a specimen and is capable of maintaining an interior temperature and humidity thereof, and an optical system space adjacent and optically connected to the culture vessel. The optical system space includes a scanner that two-dimensionally scans ultrashort pulsed laser light across the specimen; an objective lens that focuses the scanned ultrashort pulsed laser light on the specimen and collects light coming from the specimen; a dichroic mirror, disposed between the scanner and the objective lens, that splits off the light coming from the specimen from the laser light; a photodetector that detects the split-off light coming from the specimen; and an outer cover, provided so as to surround the optical system space, that blocks light coming from outside the optical system space.
摘要:
Provided is a laser scanning microscope that allows stable examination by eliminating the influence of ambient light while inhibiting damage to a specimen and fading of fluorescence. Employed is a laser scanning microscope 1 including a culture vessel 6 accommodating a specimen A and capable of maintaining an interior temperature and humidity thereof and an optical system space 5 adjacent to the culture vessel 6 and optically connected to the culture vessel 6. The optical system space 5 includes a scanner 22 that two-dimensionally scans ultrashort pulsed laser light across the specimen A; an objective lens 15 that focuses the scanned ultrashort pulsed laser light on the specimen A and collects light coming from the specimen A; a dichroic mirror 53, disposed between the scanner 22 and the objective lens 15, that splits off the light coming from the specimen A from the laser light; a photodetector 55 that detects the split-off light coming from the specimen A; and a outer cover 2, provided so as to surround the optical system space 5, that blocks light coming from outside the optical system space 5.
摘要:
A confocal observation system, comprising, an image acquisition unit for acquiring optical cross sectional images of a three-dimensional specimen, a three-dimensional image construction unit for constructing a three-dimensional image from the optical cross sectional images acquired by the image acquisition unit, a specification unit for specifying a desired three-dimensional region in the three-dimensional image constructed by the three-dimensional image construction unit, and a region acquisition unit for acquiring a cross sectional region to be irradiated with excitation light or stimulation light based on the three-dimensional region specified by the specification unit, wherein the excitation light or the stimulation light irradiates a region in the three-dimensional specimen corresponding to the cross sectional region acquired by the region acquisition unit.
摘要:
Provided is a microscope that allows irradiation with uniform illumination light without decreasing the amount of light. Employed is a microscope 1 including an incoherent light source 31 that emits incoherent light I; an optical fiber 35 on which the incoherent light I is incident and which guides the incident incoherent light I by repeated total reflection; a DMD 37 having an array of movable micromirrors each reflecting or transmitting the guided incoherent light I; an objective lens 18 that irradiates a specimen 19 with the incoherent light I reflected or transmitted by the DMD 37 and that collects fluorescence F coming from the specimen 19; a dichroic mirror 17 that splits off the collected fluorescence F coming from the specimen 19 from the incoherent light I; and a CCD camera 13 that is disposed at a position conjugate to the position of the DMD 37 and that detects the fluorescence F coming from the specimen 19 and split off by the dichroic mirror 17.
摘要:
An observation laser beam for observing a specimen and a manipulation laser beam for manipulating the specimen are multiplexed; the multiplexed beams irradiate the specimen, which is mounted on a stage, via an objective lens; and fluorescence emitted from inside the specimen in the observation optical axis direction is detected. In a preparation mode, a focal-position adjusting unit is controlled so that the focal position of the observation laser beam and the focal position of the manipulation laser beam are coincident, independent of the movement of the objective lens or the stage by a focusing mechanism; and in an observation mode, the focal-position adjusting unit is controlled so as to cancel out the shift of the focal position of the manipulation laser beam according to the movement of the objective lens or the stage.
摘要:
A laser scanning microscope which focuses light beams from a laser beam source to a sample by means of an objective lens and detects transmission light from the sample, reflection light, or fluorescence generated from the sample, includes an observation laser scanning optical system which irradiates coherent light from one side of the sample and which carries out scanning the sample, a stimulation laser scanning optical system which irradiates coherent light from an opposite side across the sample and which carries out scanning the sample, an observation light detector provided to be branched from the observation laser scanning optical system, and a light invasion preventing section which prevents the coherent light irradiated from the stimulation laser scanning optical system from invading the observation light detector.