Abstract:
The invention relates to a semiconductor device having a vertical transistor bipolar structure of emitter, base, and collector formed in this order from a semiconductor substrate surface in a depth direction. The semiconductor device includes an electrode embedded from the semiconductor substrate surface into the inside and insulated by an oxide film. In the surface of the substrate, a first-conductivity-type first semiconductor region, a second-conductivity-type second semiconductor region, and a first-conductivity-type third semiconductor region are arranged, from the surface side, inside a semiconductor device region surrounded by the electrode and along the electrode with the oxide film interposed therebetween, the second semiconductor region located below the first semiconductor region, the third semiconductor region located below the second semiconductor region. The electrode is insulated from the first to third semiconductor regions, and current gain is variable through application of voltage to the electrode.
Abstract:
A photoelectric converter includes a first pn junction comprised of at least two semiconductor regions of different conductivity types, and a first field-effect transistor including a first source connected with one of the semiconductor regions, a first drain, a first insulated gate and a same conductivity type channel as that of the one of the semiconductor regions. The first drain is supplied with a second potential at which the first pn junction becomes zero-biased or reverse-biased relative to a potential of the other of the semiconductor regions. When the first source turns to a first potential and the one of the semiconductor regions becomes zero-biased or reverse-biased relative to the other semiconductor regions, the first pn junction is controlled not to be biased by a deep forward voltage by supplying a first gate potential to the first insulated gate, even when either of the semiconductor regions is exposed to light.
Abstract:
In order to achieve a photoelectric conversion cell and an array of high sensitivity and high dynamic range, there is a need for a photoelectric conversion cell and an array in which combination of an amplified photoelectric conversion element and a selection element are resistant to external noise, and the combination is resistant to effects from address selection pulse noise at array readout time. In the present invention, in order to solve the problem, a photoelectric conversion cell has been configured with a combination of an amplified photoelectric conversion element (100) and a selection element (10 and the like) which are resistant to external noise, and various means of solution of the combination are provided which are resistant to the effects of address selection pulse noise at array readout time. As a result, a dynamic range of 6 to 7 orders of magnitude for light detection has become possible.
Abstract:
A sense circuit includes a differential amplifier circuit including an inverting input section, a non-inverting input section and an output section, an electrical capacitor connected between the inverting input section and the output section, and a field effect transistor including a source, a drain, and a gate. One of the source and the drain is connected to the inverting input section, and the other of the source and the drain is connected to the output section. A reference potential is supplied to the non-inverting input section, and an output section of a photoelectric conversion cell having an added switching function is connected to the inverting input section.
Abstract:
The invention relates to a semiconductor device having a vertical transistor bipolar structure of emitter, base, and collector formed in this order from a semiconductor substrate surface in a depth direction. The semiconductor device includes an electrode embedded from the semiconductor substrate surface into the inside and insulated by an oxide film. In the surface of the substrate, a first-conductivity-type first semiconductor region, a second-conductivity-type second semiconductor region, and a first-conductivity-type third semiconductor region are arranged, from the surface side, inside a semiconductor device region surrounded by the electrode and along the electrode with the oxide film interposed therebetween, the second semiconductor region located below the first semiconductor region, the third semiconductor region located below the second semiconductor region. The electrode is insulated from the first to third semiconductor regions, and current gain is variable through application of voltage to the electrode.
Abstract:
A sense circuit includes a differential amplifier circuit including an inverting input section, a non-inverting input section and an output section, an electrical capacitor connected between the inverting input section and the output section, and a field effect transistor including a source, a drain, and a gate. One of the source and the drain is connected to the inverting input section, and the other of the source and the drain is connected to the output section. A reference potential is supplied to the non-inverting input section, and an output section of a photoelectric conversion cell having an added switching function is connected to the inverting input section.
Abstract:
In order to achieve a photovoltaic cell and an array of high sensitivity and high dynamic range, there is a need for a photovoltaic cell and an array which are combined so that an amplified photovoltaic element and a selection element are resistant to external noise, and so that the combination is resistant to effects from address selection pulse noise at array readout time. In the present invention, in order to solve the problem, a photovoltaic cell has been configured with a combination of an amplified photovoltaic element (100) and a selection element (10 and the like) which are resistant to external noise, and various means of solution of the combination are provided which are resistant to the effects of address selection pulse noise at array readout time. As a result, a dynamic range of 6 to 7 orders of magnitude for light detection has become possible.
Abstract:
The present invention is made to realize a two dimensional optical sensor array having improved performance, for instance, at least one of improved response time, improved intermixing problem, improved dynamic range, improved ability to sense a lower illuminance optical image and improved signal to noise ratio. For these purposes, an optical sensor array with a novel sensing method is proposed. For sensing each of the optical sensor in the array, one of a selected group of plurality of interconnecting means is selected and is driven from a first electrical potential to a second electrical potential while rest of the selected group of plurality of interconnecting means are kept to the first electrical potential, then, photo-electrical current from optical sensors connected to the selected one of the selected group of plurality of interconnecting means is sequentially sensed at around the second electrical potential through the selected one of the selected group of plurality of interconnecting means, by sequentially driving each one of unselected group of plurality of interconnecting means from a third electrical potential to a fourth electrical potential and then from the fourth electrical potential to the third electrical potential.
Abstract:
A sample cooling apparatus capable of cooling and holding samples or wafers at a cryogenic temperature with no vibration or drift with respect to a measurement reference surface is disclosed. In the sample cooling apparatus, a sample holder is arranged in a vacuum vessel mounted on a housing having a table for forming a measurement reference surface to be supported by a thermal insulator. A frame is disposed within the housing to be supported by a first buffer. A refrigerating machine is disposed in the frame to be supported by a second buffer and has a head directed to the vacuum vessel. The cooling head of the refrigerating machine is connected to the sample holder by way of a flexible thermal conduction member.
Abstract:
Disclosed is an image capturing device provided with an irradiation unit, an image capturing unit, and a color representation setting unit. The irradiation unit irradiates a subject with infrared rays having different wavelength intensity distributions, the image capturing unit captures images of the subject by the respective infrared rays being reflected by the subject and forming image information indicating the respective images, and the color representation setting unit sets color representation information for representing the respective images, which are indicated by the formed image information, by different plain colors. Also disclosed is an image capturing method for separating infrared rays from a subject into infrared rays having different wavelength intensity distributions, capturing images of the subject by the respective infrared rays having different wavelength intensity distributions, forming image information indicating the respective images, and representing the respective images, which are indicated by the formed image information, by different plain colors.