摘要:
A substrate has a top side and a bottom side. A solar cell is secured to the top side of the substrate and has an anode and a cathode. A heat transfer element is secured to the bottom side of the substrate. An anode pad is formed on the top side of the substrate and is coupled to the anode of the solar cell; similarly, a cathode pad is formed on the top side of the substrate and is coupled to the cathode of the solar cell. The substrate coefficient of thermal expansion and the solar cell coefficient of thermal expansion match within plus or minus ten parts per million per degree C.
摘要:
A substrate has a top side and a bottom side. A solar cell is secured to the top side of the substrate and has an anode and a cathode. A heat transfer element is secured to the bottom side of the substrate. An anode pad is formed on the top side of the substrate and is coupled to the anode of the solar cell; similarly, a cathode pad is formed on the top side of the substrate and is coupled to the cathode of the solar cell. The substrate coefficient of thermal expansion and the solar cell coefficient of thermal expansion match within plus or minus ten parts per million per degree C.
摘要:
A photovoltaic structure includes, from bottom to top, a conductive substrate, at least one electrical isolation layer, and a patterned conductive material layer. The patterned conductive material layer includes at least one solar concentrator receiver plate configured to mount a photovoltaic concentrator cells and at least one metallic wiring structure. The at least one electrical isolation layer can include a stack of an electrically insulating metal-containing compound layer and an organic or inorganic dielectric material that provides thermal conduction and electrical isolation. The at least one solar concentrator receiver plate can be thicker than the at least one metallic wiring structure so as to provide enhanced thermal spreading and conduction through the at least one electrical isolation layer and into the conductive substrate.
摘要:
A photovoltaic structure includes, from bottom to top, a conductive substrate, at least one electrical isolation layer, and a patterned conductive material layer. The patterned conductive material layer includes at least one solar concentrator receiver plate configured to mount a photovoltaic concentrator cells and at least one metallic wiring structure. The at least one electrical isolation layer can include a stack of an electrically insulating metal-containing compound layer and an organic or inorganic dielectric material that provides thermal conduction and electrical isolation. The at least one solar concentrator receiver plate can be thicker than the at least one metallic wiring structure so as to provide enhanced thermal spreading and conduction through the at least one electrical isolation layer and into the conductive substrate.
摘要:
A method for forming a photovoltaic structure includes forming a stack, from bottom to top, of a conductive substrate, at least one electrical isolation layer, and a patterned conductive material layer. At least one solar concentrator receiver plate configured to mount a photovoltaic concentrator cells and at least one metallic wiring structure are formed in the patterned conductive material layer. The at least one electrical isolation layer can include a stack of an electrically insulating metal-containing compound layer and an organic or inorganic dielectric material that provides thermal conduction and electrical isolation. The at least one solar concentrator receiver plate can be thicker than the at least one metallic wiring structure so as to provide enhanced thermal spreading and conduction through the at least one electrical isolation layer and into the conductive substrate.
摘要:
A high resolution AFM tip is provided which includes an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of the semiconductor cantilever, the semiconductor pyramid having an apex. The AFM tip also includes a single Al-doped semiconductor nanowire on the exposed apex of the semiconductor pyramid, wherein the single Al-doped semiconductor nanowire is epitaxial with respect to the apex of the semiconductor pyramid.
摘要:
A method of fabricating templated semiconductor nanowires on a surface of a semiconductor substrate for use in semiconductor device applications is provided. The method includes controlling the spatial placement of the semiconductor nanowires by using an oxygen reactive seed material. The present invention also provides semiconductor structures including semiconductor nanowires. In yet another embodiment, patterning of a compound semiconductor substrate or other like substrate which is capable of forming a compound semiconductor alloy with an oxygen reactive element during a subsequent annealing step is provided. This embodiment provides a patterned substrate that can be used in various applications including, for example, in semiconductor device manufacturing, optoelectronic device manufacturing and solar cell device manufacturing.
摘要:
A method of fabricating templated semiconductor nanowires on a surface of a semiconductor substrate for use in semiconductor device applications is provided. The method includes controlling the spatial placement of the semiconductor nanowires by using an oxygen reactive seed material. The present invention also provides semiconductor structures including semiconductor nanowires. In yet another embodiment, patterning of a compound semiconductor substrate or other like substrate which is capable of forming a compound semiconductor alloy with an oxygen reactive element during a subsequent annealing step is provided. This embodiment provides a patterned substrate that can be used in various applications including, for example, in semiconductor device manufacturing, optoelectronic device manufacturing and solar cell device manufacturing.
摘要:
A method of fabricating templated semiconductor nanowires on a surface of a semiconductor substrate for use in semiconductor device applications is provided. The method includes controlling the spatial placement of the semiconductor nanowires by using an oxygen reactive seed material. The present invention also provides semiconductor structures including semiconductor nanowires. In yet another embodiment, patterning of a compound semiconductor substrate or other like substrate which is capable of forming a compound semiconductor alloy with an oxygen reactive element during a subsequent annealing step is provided. This embodiment provides a patterned substrate that can be used in various applications including, for example, in semiconductor device manufacturing, optoelectronic device manufacturing and solar cell device manufacturing.
摘要:
A method of fabricating high resolution atomic force microscopy (AFM) tips including a single semiconductor nanowire grown at an apex of a semiconductor pyramid of each AFM tip is provided. The semiconductor nanowire that is grown has a controllable diameter and a high aspect ratio, without significant tapering from the tip of the semiconductor nanowire to its base. The method includes providing an AFM probe including a semiconductor cantilever having a semiconductor pyramid extending upward from a surface of said semiconductor cantilever. The semiconductor pyramid has an apex. A patterned oxide layer is formed on the AFM probe. The patterned oxide layer has an opening that exposes the apex of the semiconductor pyramid. A single semiconductor nanowire is grown on the exposed apex of the semiconductor pyramid utilizing a non-oxidized Al seed material as a catalyst for nanowire growth.