Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
A medical device includes a sensor interface for measuring one or more physiological signals of the patient; at least one motion detector for detecting movement of the device; a processor coupled to the sensor interface and the at least one motion detector; and a memory communicatively coupled to the processor and comprising instructions that cause the processor to receive movement information comprising at least acceleration information and heading information from the at least one motion detector; detect movement of the medical device from the movement information, wherein the movement of the medical device comprises a distance traveled by the medical device and a direction traveled by the medical device; and estimate a current location of the medical device relative to a previous location of the medical device using dead reckoning based at least in part on the distance and direction traveled by the medical device.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
According to at least one aspect, a wearable medical device is provided. The wearable medical device may include a sensing electrode to sense an electrocardiogram signal of a patient, a therapy electrode to provide treatment to the patient, a garment to be worn about a torso of the patient and receive the sensing electrode and the therapy electrode, and a controller operatively coupled to the sensing electrode and the therapy electrode. The controller may be configured to determine a current location of the wearable medical device based on a previous position of the medical device and at least a speed and a direction of movement of the wearable medical device.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
According to at least one aspect, a wearable medical device is provided. The wearable medical device may include a sensing electrode to sense an electrocardiogram signal of a patient, a therapy electrode to provide treatment to the patient, a garment to be worn about a torso of the patient and receive the sensing electrode and the therapy electrode, and a controller operatively coupled to the sensing electrode and the therapy electrode. The controller may be configured to determine a current location of the wearable medical device based on a previous position of the medical device and at least a speed and a direction of movement of the wearable medical device.
Abstract:
A medical device includes a sensor interface for measuring one or more physiological signals of the patient; at least one motion detector for detecting movement of the device; a processor coupled to the sensor interface and the at least one motion detector; and a memory communicatively coupled to the processor and comprising instructions that cause the processor to receive movement information comprising at least acceleration information and heading information from the at least one motion detector; detect movement of the medical device from the movement information, wherein the movement of the medical device comprises a distance traveled by the medical device and a direction traveled by the medical device; and estimate a current location of the medical device relative to a previous location of the medical device using dead reckoning based at least in part on the distance and direction traveled by the medical device.
Abstract:
A medical device capable of determining its location is provided. The medical device comprises a memory, one or more antennas, one or more processors coupled with the memory and the one or more antennas, a location manager component executable by the one or more processors. The location manager component is configured to receive first location information from a first location information source and second location information from a second location information source, to rank the first location information source and the second location information source according to a hierarchy of location information sources, the hierarchy of location information sources specifying that the first location information source is of higher rank than the second location information source, determine an approximate location of the medical device based on the first location information, and improve the accuracy of the approximate location based on the second location information.