Abstract:
Provided is a therapeutic device that includes tubing; at least one pump; and a column or filter capable of removing leukocytes, cytokines, and/or other blood components from the blood of a patient to effectively treat or prevent post-resuscitation syndrome. Methods for treating and/or preventing post-resuscitation syndrome that include the use of such a device, or a filter or column capable of selectively removing inflammatory biomarkers, are also provided.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
A plunger adapter and a detachable compression pad for piston driven chest compression devices optimizes the application of chest compressions to a fixed location on a patient's chest. The detachable compression pad may be removably secured to the patient above the patient's sternum to ensure that the compression pressure from the piston through the piston adapter is applied to a fixed location on the patient's chest. As the plunger and plunger adapter retract from the chest, the compression pad remains fixed to the patient's chest, and as the plunger and plunger adapter extend from the chest compression unit for subsequent compression strokes, the distal end of the plunger adapter reengages the compression pad to apply compression to a fixed location on the patient's chest.
Abstract:
A plunger adapter and a detachable compression pad for piston driven chest compression devices optimizes the application of chest compressions to a fixed location on a patient's chest. The detachable compression pad may be removably secured to the patient above the patient's sternum to ensure that the compression pressure from the piston through the piston adapter is applied to a fixed location on the patient's chest. As the plunger and plunger adapter retract from the chest, the compression pad remains fixed to the patient's chest, and as the plunger and plunger adapter extend from the chest compression unit for subsequent compression strokes, the distal end of the plunger adapter reengages the compression pad to apply compression to a fixed location on the patient's chest.
Abstract:
A plunger adapter and a detachable compression pad for piston driven chest compression devices optimizes the application of chest compressions to a fixed location on a patient's chest. The detachable compression pad may be removably secured to the patient above the patient's sternum to ensure that the compression pressure from the piston through the piston adapter is applied to a fixed location on the patient's chest. As the plunger and plunger adapter retract from the chest, the compression pad remains fixed to the patient's chest, and as the plunger and plunger adapter extend from the chest compression unit for subsequent compression strokes, the distal end of the plunger adapter reengages the compression pad to apply compression to a fixed location on the patient's chest.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.
Abstract:
A system for improving cardiac output of a patient suffering from pulseless electrical activity or shock and yet displays myocardial wall motion including: a sensor to detect myocardial activity to determine the presence of residual left ventricular pump function having a contraction or ejection phase and a filling or relaxation phase, a device to prompt the application of or apply a compressive force repeatedly applied to the chest based on the sensed myocardial activity such that the compressive force is applied during at least some of the ejection phases and is ceased during at least some of the relaxation phases to permit residual cardiac filling, thereby enhancing cardiac output and organ perfusion.
Abstract:
Optical alignment for piston driven chest compression devices optimizes the application of chest compressions to a fixed location on a subject's chest and provides information regarding the depth and frequency of chest compressions. The targeting system records and may display some telemetry corresponding to any movement or “walking” away from the selected compression site as well as the depth and frequency of compressions. The targeting system is interconnected to the compression device controller and the targeting system provides warnings to operators if the compression components contact the subject outside a preset warning limit away from the selected compression site. The targeting system may also halt the compression device if the site of contact between the compression components and the subject is located outside a preset absolute limit.
Abstract:
Example defibrillator electrode assemblies compression assemblies are described that may be dimensioned and configured for use on a patient despite physical constraints that limit the area or locations on a patient onto which an electrode assembly may be placed. A cardio pulmonary resuscitation (CPR) assembly is also described that protects a patient with a transthoracic incision from further injury during application of CPR compressions proximate to the incision.