摘要:
Embodiments of the present invention provide a method and system for manufacturing copper-based capacitor on an integrated circuit. For example, the integrated circuit is associated with a channel length of less than 0.13 um. It is to be appreciated that, depending upon application, the present invention provides a more improved method for manufacturing capacitors and thus allow MIM capacitors to be manufactured at smaller dimensions. The method includes a step for providing a substrate. The method also includes a step for providing a layer of inter-metal dielectric overlaying the substrate. The method additionally includes a step for providing a bottom layer. The bottom layer includes a first portion and a second portion. The first portion can be characterized as electrically conductive. In addition, the method includes a step for providing a first insulating layer overlaying the bottom layer.
摘要:
A method for manufacturing a capacitor on an integrated circuit includes providing an inter-metal dielectric layer on a substrate, a bottom layer having a first and second portions, a first insulating layer having via plug openings on the bottom layer, and via plugs disposed in the via plug openings. The via plugs include a first and second via plugs and are electrically coupled to the first portion of the bottom layer. The method further includes providing a capacitor layer having a first barrier metal layer coupled to the first via plug. The capacitor layer also has a capacitor dielectric layer overlying the first barrier metal layer and a second barrier metal overlying the capacitor dielectric layer. The method further includes defining a first and second capacitor layer portions. The first capacitor layer portion has two opposite sides and spacers disposed on their surface.
摘要:
A method of fabricating an integrated inductor device includes providing a silicon substrate and forming a thickness of an insulating layer overlying the silicon substrate. The insulating layer includes a dummy structure within a portion of the thickness. The method includes forming an inductor having a first portion and a second portion. The first portion includes a spiral coil of conductor lines. The method also includes exposing the dummy structure by forming an opening in the insulating layer and removing the dummy structure to form a cavity underlying the inductor to reduce a dielectric constant and to increase a Q value of the inductor. The method includes using aluminum or copper for the dummy structures. The method includes dry etching the insulator and wet etching the dummy structure. The method also includes forming the inductors using aluminum or copper.
摘要:
A method of fabricating an integrated inductor device includes providing a silicon substrate and forming a thickness of an insulating layer overlying the silicon substrate. The insulating layer includes a dummy structure within a portion of the thickness. The method includes forming an inductor having a first portion and a second portion. The first portion includes a spiral coil of conductor lines. The method also includes exposing the dummy structure by forming an opening in the insulating layer and removing the dummy structure to form a cavity underlying the inductor to reduce a dielectric constant and to increase a Q value of the inductor. The method includes using aluminum or copper for the dummy structures. The method includes dry etching the insulator and wet etching the dummy structure. The method also includes forming the inductors using aluminum or copper.
摘要:
A method for forming a variable capacitor includes providing a semiconductor substrate of a first conductivity type and forming an active region of a second conductivity type within the substrate. The method forms a first dielectric layer overlying the active region. The method provides a conductive gate layer over the first dielectric layer and selectively patterns the conductive gate layer to form a plurality of holes in the conductive gate layer. A perimeter of the holes and a spacing between a first and a second holes are selective to provide a high quality factor (Q) of the capacitor. The method implants impurities of the second conductivity type into the active region through the plurality of holes in the conductive layer. The method also includes providing a second dielectric layer and patterning the second dielectric layer to form contacts to the active region and the gate.
摘要:
A method for forming a variable capacitor includes providing a semiconductor substrate of a first conductivity type and forming an active region of a second conductivity type within the substrate. The method forms a first dielectric layer overlying the active region. The method provides a conductive gate layer over the first dielectric layer and selectively patterns the conductive gate layer to form a plurality of holes in the conductive gate layer. A perimeter of the holes and a spacing between a first and a second holes are selective to provide a high quality factor (Q) of the capacitor. The method implants impurities of the second conductivity type into the active region through the plurality of holes in the conductive layer. The method also includes providing a second dielectric layer and patterning the second dielectric layer to form contacts to the active region and the gate.
摘要:
A bit-line voltage generator is provided. The bit-line voltage generator includes a discharge enhanced bias source and a switch unit. The switch unit includes a clamp transistor having a source, a gate connected to the discharge enhanced bias source, and a drain receiving a voltage; a switch transistor having a gate receiving a control signal, a drain connected to the source of the clamp transistor, and a source connected to a memory array, wherein a parasitic capacitor exists between the gate and the source of the clamp transistor; a resistor having a first terminal connected to the drain of the switch transistor, and a second terminal connected to ground; and a capacitor having a first terminal connected to the drain of the switch transistor, and a second terminal connected to ground, wherein a charge in the parasitic capacitor, when the switch transistor is turned on, is almost identical to that when the switch transistor is turned off, so that a couple effect between the switch unit and the discharge enhanced bias source is reduced, thereby stabilizing a bias applied to the memory array.
摘要:
A method for reading data in a nonvolatile memory at a power-on stage is provided and includes the following steps. Firstly, the data are read through a reference voltage. Next, a failure number is counted when reading the data has a fail result. Next, the reference voltage is adjusted when the failure number reaches a predetermined number. The effect effectively and exactly reading configuration information at a power-on stage is accomplished through the method.
摘要:
A controlling output buffer slew rate method and an output buffer circuit for a memory device is provided. The output buffer include an output stage formed by a PMOS transistor and a NMOS transistor electrically connected in series, a pre-driver for respectively controlling each gate terminal of the PMOS transistor and the NMOS transistor in order to bring these transistors to the turning-on threshold, a first wire, for transmitting a pull-up signal, coupled between the output stage and the pre-driver, and a second wire, for transmitting a pull-down signal, coupled between the output stage and the pre-driver. After a DATA signal transition (logic state is changed from “H” to “L” or “L” from to “H”), the PMOS or NMOS transistor is turned off first, and then the NMOS or PMOS transistor is turned on due to the time difference between the pull-up signal and the pull-down signal.
摘要:
Over-erasure induced noise on a data line in a nonvolatile memory that couples into an adjacent data line is mitigated by using twisted data lines and differential sensing amplifiers. Noise coupled into data lines is compensated by similar noise coupled into reference data lines and cancelled in the differential sensing amplifiers.