摘要:
An organic field effect transistor (FET) is described with an active dielectric layer comprising a low-temperature cured dielectric film of a liquid-deposited silsesquioxane precursor. The dielectric film comprises a silsesquioxane having a dielectric constant of greater than 2. The silsesquioxane dielectric film is advantageously prepared by curing oligomers having alkyl(methyl) and/or alkyl(methyl) pendant groups. The invention also embraces a process for making an organic FET comprising providing a substrate suitable for an organic FET; applying a liquid-phase solution of silsesquioxane precursors over the surface of the substrate; and curing the solution to form a silsesquioxane active dielectric layer. The organic FET thus produced has a high-dielectric, silsesquioxane film with a dielectric constant of greater than about 2, and advantageously, the substrate comprises an indium-tin oxide coated plastic substrate.
摘要:
An organic field effect transistor (FET) is described with an active dielectric layer comprising a low-temperature cured dielectric film of a liquid-deposited silsesquioxane precursor. The dielectric film comprises a silsesquioxane having a dielectric constant of greater than 2. The silsesquioxane dielectric film is advantageously prepared by curing oligomers having alkyl(methyl) and/or alkyl(methyl) pendant groups. The invention also embraces a process for making an organic FET comprising providing a substrate suitable for an organic FET; applying a liquid-phase solution of silsesquioxane precursors over the surface of the substrate; and curing the solution to form a silsesquioxane active dielectric layer. The organic FET thus produced has a high-dielectric, silsesquioxane film with a dielectric constant of greater than about 2, and advantageously, the substrate comprises an indium-tin oxide coated plastic substrate.
摘要:
An organic field effect transistor (FET) is described with an active dielectric layer comprising a low-temperature cured dielectric film of a liquid-deposited silsesquioxane precursor. The dielectric film comprises a silsesquioxane having a dielectric constant of greater than 2. The silsesquioxane dielectric film is advantageously prepared by curing oligomers having alkyl(methyl) and/or alkyl(methyl) pendant groups. The invention also embraces a process for making an organic FET comprising providing a substrate suitable for an organic FET; applying a liquid-phase solution of silsesquioxane precursors over the surface of the substrate; and curing the solution to form a silsesquioxane active dielectric layer. The organic FET thus produced has a high-dielectric, silsesquioxane film with a dielectric constant of greater than about 2, and advantageously, the substrate comprises an indium-tin oxide coated plastic substrate.
摘要:
A process for fabricating a MEMS device is disclosed. The device has at least one hinged element. The MEMS device including the hinged element is delineated and defined on a semiconductor substrate. The substrate is placed device side down in a chamber. The MEMS device is then exposed to a release expedient for sufficient amount of time for the release expedient to dissolve a sacrificial material connecting the element to the substrate. Upon the dissolution of the sacrificial material, the element is released from the substrate and pivots away from the surface.
摘要:
Measurement of the delamination resistance of polymer coated optical fiber can provide valuable information for quality control and/or coating development, and a method of making polymer coated optical fiber that includes determination of the delamination resistance is disclosed. Also disclosed is apparatus that facilitates determination of the delamination resistance.
摘要:
An improved method of coating an optical fiber is disclosed. A transducer is submerged in a container of liquid coating material and activated so that it causes the formation of a wave of coating material within the container. The optical fiber is then drawn through the container and through the wave, the wave counterbalancing the negative meniscus produced by drawing the fiber through the container. A curved housing also may be placed in the container and surrounding the transducer for controlling the size, amplitude, shape, or direction of the wave. A plurality of transducers also advantageously may be used.
摘要:
This invention is predicated upon applicants' discovery that UV-induced gratings can be formed through polymer coatings that include conjugated double bonds and aromatic moieties. Coatings with low concentrations of aromatic-containing free-radical photoinitiators provide both reasonable curing speeds and sufficient transparency that gratings can be written through them. Moreover some of these aromatic-containing free-radical photoinitiators act synergistically with non-aromatic ketone photoinitiators. Advantageous aromatic-containing free-radical photoinitiator concentrations are in the range 0.01%-0.1% and preferably in the range 0.02% to 0.05%. Advantageous polymer coatings are acrylate-based coatings.
摘要:
An improved siloxane-based composition for use as a low &kgr; dielectric material in integrated circuit applications is provided, the composition exhibiting desirable thermal mechanical stability compared to conventional siloxane-based low-&kgr; compositions. Specifically, the invention provides a modified methylsilsesquioxane composition suitable for higher temperature applications than a composition formed from only methylsilsesquioxane. The modified oligomer is characterized by the pendant group ratio A:B:C, where A represents the percentage of pendant groups that are methyl and is about 13 to about 67, B represents the percentage of pendant groups that are dimethyl and is greater than 0 to about 33, and C represents the percentage of pendant groups that are phenyl and is greater than 0 to about 67. The presence of dimethyl and phenyl pendant groups provides a molecular structure that has improved crack-resistance compared to an all-methyl silsesquioxane. Advantageously, the modified methylsilsesquioxane oligomer is fabricated by a particular technique, involving mixing methyltriethoxysilane monomer, before hydrolysis and condensation, with dimethyldiethoxysilane monomer that has already been partially hydrolyzed and condensed. This technique further improves the thermal mechanical stability of the resultant cured material. For low &kgr; integrated circuit application, a pore generator material is advantageously used to provide a porous final structure.
摘要:
In accordance with the invention, an optical fiber is provided with a protective coating having enhanced thermal characteristics for easy removal from the optical fiber. In particular, at elevated temperatures used in stripping, the delamination resistance drops to low levels substantially independent of modulus. This permits fabrication of a protectively coated fiber which has relatively high modulus and delamination resistance at room temperature but, due to its enhanced thermal characteristics, is nonetheless relatively easy to strip at elevated temperatures. Thus, for example, applicants can provide a protectively coated optical fiber or ribbon with a room temperature modulus of at least 90 psi, and a high temperature delamination resistance that is less than 40% of the room-temperature delamination resistance and preferably less than 30%. Coatings based on a polyether backbone and non-polar monomers are preferred.
摘要:
In accordance with the invention, an optical fiber is provided with a protective polymer coating that is substantially free (less than 0.1% by weight and preferably 0%) of adhesion promoters and coupling agents. Advantageously, in lieu of adhesion promoters, the primary polymer coating formulation is provided with an additive which will covalently bond with the fiber but not with the primary polymer.