摘要:
An assembly for a charged particle detection unit is described. The assembly comprises a scintillator disc, a partially coated light guide a thin metal tube for allowing the primary charged particle beam to pass through and a photomultiplier tube (PMT). The shape of scintillator disc and light guide are redesigned to improved the light signal transmission thereafter enhance the light collection efficiency. A light guide with a conicoidal surface over an embedded scintillator improved the light collection efficiency of 34% over a conventional design.
摘要:
An assembly for a charged particle detection unit is described. The assembly comprises a scintillator disc, a partially coated light guide a thin metal tube for allowing the primary charged particle beam to pass through and a photomultiplier tube (PMT). The shape of scintillator disc and light guide are redesigned to improved the light signal transmission thereafter enhance the light collection efficiency. A light guide with a conicoidal surface over an embedded scintillator improved the light collection efficiency of 34% over a conventional design.
摘要:
The present invention relates to a charged particle beam apparatus which employs a scanning electron microscope for sample inspection and defect review.The present invent provides solution of improving imaging resolution by utilizing a field emission cathode tip with a large tip radius, applying a large accelerating voltage across ground potential between the cathode and anode, positioning the beam limit aperture before condenser lens, utilizing condenser lens excitation current to optimize image resolution, applying a high tube bias to shorten electron travel time, adopting and modifying SORIL objective lens to ameliorate aberration at large field of view and under electric drifting and reduce the urgency of water cooling objective lens while operating material analysis.The present invent provides solution of improving throughput by utilizing fast scanning ability of SORIL and providing a large voltage difference between sample and detectors.
摘要:
An assembly for a charged particle detection device of high detection efficiency is described. The assembly comprising a metal grid for applying attractive potential to lure charged particles; a scintillator disc to absorb the energy from impinging charged particle and reemit the energy in form of light or photons; a light guide to transmit light or photons; and a photomultiplier tube (PMT) cohere with the end of light guide to receive light or photons from light guide and convert it into current signal. A light guide with a bullet-head-shaped front portion ensures total reflection of light propagating within the light guide. A frustum-cone-shaped scintillator disc releases the light that originally trapped in the scintillator disc due to the shape of scintillator.
摘要:
An assembly for a charged particle detection device of high detection efficiency is described. The assembly comprising a metal grid for applying attractive potential to lure charged particles; a scintillator disc to absorb the energy from impinging charged particle and reemit the energy in form of light or photons; a light guide to transmit light or photons; and a photomultiplier tube (PMT) cohere with the end of light guide to receive light or photons from light guide and convert it into current signal. A light guide with a bullet-head-shaped front portion ensures total reflection of light propagating within the light guide. A frustum-cone-shaped scintillator disc releases the light that originally trapped in the scintillator disc due to the shape of scintillator.
摘要:
The present invention provides a scanning transmission electron microscope (STEM). In the STEM, a specimen is sandwiched between a variable axis objective lens and a variable axis collection lens. The axis of the collection lens varies along with the variation of the objective lens axis in a coordinated manner. The STEM of the invention exhibits technical merits such as large scanning field, high image resolution across the entire scanning field, and high throughput, among others.
摘要:
The present invention provides a scanning transmission electron microscope (STEM). In the STEM, a specimen is sandwiched between a variable axis objective lens and a variable axis collection lens. The axis of the collection lens varies along with the variation of the objective lens axis in a coordinated manner. The STEM of the invention exhibits technical merits such as large scanning field, high image resolution across the entire scanning field, and high throughput, among others.
摘要:
The methods of the invention provide improved rice grain nutrition by manipulation of the rice starch crystalline structure leading to easier penetration of nutrients into the rice grain and enhancement of rice grains with nutrients, thereby creating enhanced rice grain products. In addition, methods of direct delivery of nutrients into rice grains are also presented.
摘要:
An apparatus comprising: a first resonant circuit configured to have an impedance at a first operational frequency band to impedance match a first radiator to radio circuitry, and to have an impedance at a second operational frequency band to impedance match a second radiator to the radio circuitry; a second resonant circuit configured to have an impedance at the first operational frequency band to impedance match the first radiator to the radio circuitry, and to have an impedance at the second operational frequency band to impedance match the second radiator to the radio circuitry; and a third resonant circuit configured to have an impedance at the first operational frequency band to impedance match the first radiator to the radio circuitry, and to have an impedance at the second operational frequency band to impedance match the second radiator to the radio circuitry.
摘要:
A truck includes a frame, an operator cab on the frame and a drive axle having a differential. The differential can be connected to a drive shaft. A fairing for directing air flow around the differential is attached to the frame forward of the drive axle and forward of the differential. The fairing can have a non-deflected position and a deflected position.