摘要:
High quality epitaxial layers of monocrystalline oxide materials (24) are grown overlying monocrystalline substrates such as large silicon wafers (22) using RHEED information to monitor the growth rate of the growing film. The monocrystalline oxide layer (24) may be used to form a compliant substrate for monocrystalline growth of additional layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer (22) spaced apart from the silicon wafer (22) by an amorphous interface layer of silicon oxide (28). The amorphous interface layer (28) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (24).
摘要:
An exemplary system and method for providing a microwave regime, frequency-agile device is disclosed as comprising inter alia: a low-loss, insulating substrate (200); a layer of SiO2 (210) over the surface of said substrate; and a layer of BST (220) deposited over the SiO2 layer (210). Disclosed features and specifications may be variously controlled, configured, adapted or otherwise optionally modified to further improve or otherwise optimize frequency response or other material characteristics. Exemplary embodiments of the present invention representatively provide for integrated high-efficiency, low-loss microwave components that may be readily incorporated with existing technologies for the improvement of frequency response, device package form factors, weights and/or other manufacturing, device or material performance metrics.