Abstract:
A ferromagnetic semiconductor structure is provided. The structure includes a monocrystalline semiconductor substrate and a doped titanium oxide anatase layer overlying the semiconductor substrate.
Abstract:
A method of fabricating a semiconductor structure including the steps of: providing a silicon substrate having a surface; forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate; and forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer, where providing a substrate includes providing a substrate having formed thereon a silicon oxide, and wherein forming by atomic layer deposition a seed layer further includes depositing a layer of a metal oxide onto a surface of the silicon oxide, flushing the layer of metal oxide with an inert gas, and reacting the metal oxide and the silicon oxide to form a monocrystalline silicate.
Abstract:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, nitrogen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−Ox]2, where M is a metal and X is 0≦X
Abstract:
A method for fabricating a semiconductor structure including the steps of providing a silicon substrate (10) having a surface (12); forming an interface including a seed layer (18) adjacent to the surface (12) of the silicon substrate (10), forming a buffer layer (20) utilizing molecular oxygen; and forming one or more layers of a high dielectric constant oxide (22) on the buffer layer (20) utilizing activated oxygen.
Abstract:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.
Abstract:
A method of forming a thin silicide layer on a silicon substrate 12 including heating the surface of the substrate to a temperature of approximately 500.degree. C. to 750.degree. C. and directing an atomic beam of silicon 18 and an atomic beam of an alkaline-earth metal 20 at the heated surface of the substrate in a molecular beam epitaxy chamber at a pressure in a range below 10.sup.-9 Torr. The silicon to alkaline-earth metal flux ratio is kept constant (e.g. Si/Ba flux ratio is kept at approximately 2:1) so as to form a thin alkaline-earth metal silicide layer (e.g. BaSi.sub.2) on the surface of the substrate. The thickness is determined by monitoring in situ the surface of the single crystal silicide layer with RHEED and terminating the atomic beam when the silicide layer is a selected submonolayer to one monolayer thick.
Abstract:
A method for removing silicon oxide from a surface of a substrate is disclosed. The method includes depositing material onto the silicon oxide (110) and heating the substrate surface to a sufficient temperature to form volatile compounds including the silicon oxide and the deposited material (120). The method also includes heating the surface to a sufficient temperature to remove any remaining deposited material (130).
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. A monocrystalline layer is then formed over the accommodating buffer layer, such that a lattice constant of the monocrystalline layer substantially matches the lattice constant of a subsequently grown monocrystalline film.
Abstract:
A semiconductor structure comprises a silicon substrate (10), one or more layers of single crystal oxides or nitrides (26), and an interface (14) between the silicon substrate and the one or more layers of single crystal oxides or nitrides, the interface manufactured with a crystalline material which matches the lattice constant of silicon. The interface comprises an atomic layer of silicon, nitrogen, and a metal in the form MSiN2, where M is a metal. In a second embodiment, the interface comprises an atomic layer of silicon, a metal, and a mixture of nitrogen and oxygen in the form MSi[N1−xOx]2, where M is a metal and X is 0≦X
Abstract:
A high quality epitaxial layer of monocrystalline Pb(Zr,Ti)O3 can be grown overlying large silicon wafers by first growing an strontium titanate layer on a silicon wafer. The strontium titanate layer is a monocrystalline layer spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide.