摘要:
A system energy efficiency controller connected (105) to at least one of an energy generation device (101), an energy storage device (102), an energy utilization device (103) and an energy regeneration device (104) is disclosed for enabling energy utilization. Said system energy efficiency controller (105) cooperatively controls the input and output of a ubiquitous energy flow of at least one of the energy generation device (101), the energy storage device (102), the energy utilization device (103) and the energy regeneration device (104). Said ubiquitous energy flow includes at least one of an energy flow, a material flow, and an information flow. Also disclosed are an energy efficiency gain device, an energy efficiency matching station and a smart energy service system, which are connected with the controller (105). The present invention optimizes the entire process of energy utilization using the system energy efficiency controller (105), thus improving the system energy efficiency.
摘要:
A system energy efficiency controller connected (105) to at least one of an energy generation device (101), an energy storage device (102), an energy utilization device (103) and an energy regeneration device (104) is disclosed for enabling energy utilization. Said system energy efficiency controller (105) cooperatively controls the input and output of a ubiquitous energy flow of at least one of the energy generation device (101), the energy storage device (102), the energy utilization device (103) and the energy regeneration device (104). Said ubiquitous energy flow includes at least one of an energy flow, a material flow, and an information flow. Also disclosed are an energy efficiency gain device, an energy efficiency matching station and a smart energy service system, which are connected with the controller (105). The present invention optimizes the entire process of energy utilization using the system energy efficiency controller (105), thus improving the system energy efficiency.
摘要:
An automatic vehicle following system is provided for controlling a following vehicle to maintain at least a predetermined distance behind a preceding vehicle and to substantially follow the path of the preceding vehicle. An on-line measurement system of the preceding vehicle generates signals indicative of the velocity (having speed and directional components) of the preceding vehicle, and a communication system transmits the velocity signals to the following vehicle. The following vehicle likewise has a communication system for receiving the signals from the preceding vehicle, and an on-line measurement system for providing signals indicative of the velocity of the following vehicle and signals indicative of the distance between the two vehicles. A signal processing system of the following vehicle is coupled to the communication system and on-line measurement system for estimating motion trajectory of the preceding vehicle based on the difference in the velocities of the preceding and following vehicles and the following distance. A control system generates control signals and takes action so as to perform speed control and maintain at least a predetermined safe following distance between the two vehicles, and steering control to substantially follow the path of the preceding vehicle.
摘要:
The work cell is divided into a plurality of calibration zones, and calibration is made with only one measured point in each zone. The calibration zones are set up such that the calibration error in each zone remains within an acceptable tolerance. Within each zone, calibration is preferably made according to a linear calibration algorithm. The method according to the invention includes the steps of storing a first database, of the coordinates of all the tube openings in the tube sheet coordinate system. Each coordinate of the first database is assigned to one of a plurality of calibration zones.
摘要:
An image of the object remains in the field of view of the camera, thereby generating a continuously changing image signal. The images are captured and digitized in a continual sequence S of discrete images of the scenes at a respective sequence T of points in time. During this capture sequence, a first plurality of reference signals are established corresponding to a plurality of respective captured images. In this manner, a plurality of reference images are generated on-line, during movement of the object or cameras. A second plurality of detected signals corresponding to a second plurality of captured images, are individually correlated with the respective next previous reference signal of the sequence, thereby establishing a relative position of the object or camera, for each detected signal. The absolute position of the camera or object, is determined by accumulating these relative positions.
摘要:
There discloses a ubiquitous energy network for optimum utilization of energy, which includes nodes connected by an interconnected network architecture of virtual pipelines transferring a ubiquitous energy flow, with the ubiquitous energy flow being transferred among the nodes bi-directionally. The node includes a system energy efficiency controller, and at least one of other nodes, an energy generation device, an energy storage device, an energy utilization device, and an energy regeneration device connected to the controller. The controller controls the input and output of the ubiquitous energy flow of the at least one of the other nodes, the energy generation device, the energy storage device, the energy utilization device, the energy regeneration device. Furthermore, the node, an access terminal, a virtual tag, and the virtual pipeline of the ubiquitous energy network, and a server and method for providing energy transaction and service by the ubiquitous energy network are disclosed.
摘要:
There discloses a ubiquitous energy network for optimum utilization of energy, which includes nodes connected by an interconnected network architecture of virtual pipelines transferring a ubiquitous energy flow, with the ubiquitous energy flow being transferred among the nodes bi-directionally. The node includes a system energy efficiency controller, and at least one of other nodes, an energy generation device, an energy storage device, an energy utilization device, and an energy regeneration device connected to the controller. The controller controls the input and output of the ubiquitous energy flow of the at least one of the other nodes, the energy generation device, the energy storage device, the energy utilization device, the energy regeneration device. Furthermore, the node, an access terminal, a virtual tag, and the virtual pipeline of the ubiquitous energy network, and a server and method for providing energy transaction and service by the ubiquitous energy network are disclosed.
摘要:
A relative calibration system and method for robot workcell calibration is capable of correcting errors between the robot tool center point (TCP) and the work-object frame according to a relative reference, in that a precision path will be created based on this calibrated workcell.
摘要:
A robot having a spindle is calibrated by disposing a calibration tool in the robot spindle. The position of the calibration tool is measured. An axis of the spindle is determined based on the measured position. A calibration tool center point is determined based on the measured position. A robot tool rotation axis is determined based on the determined spindle axis, robot tool center point, the determined calibration tool center point, and difference in length between the calibration tool and a robot tool.
摘要:
A robot and associated control system, as well as a method of control, for servicing a heat exchanger having a substantially planar tube sheet which defines a multiplicity of laterally spaced tube openings of known shape, each of which is centered at a coordinate on a tube sheet coordinate system. A sensory system associated with the robot end effector and the associated digital processing system, includes a vision subsystem for generating an image of a portion of the tube sheet and generating a first signal commensurate with the spatial relationship of the tool to a selected tube opening. An optical subsystem is also provided, for projecting a structured light beam toward the tube sheet and receiving a reflected structured light pattern, indicative of how closely the tool is aligned with the target opening. The end effector also includes transducers responsive to at least one of force and torque acting on the end effector, resulting from partial entry of the tool, or a tool proxy such as a guide, into a tube opening. The sensing of the reflected light pattern, and the sensing of the force and/or torque, result in the generation of second and third signals, respectively which, along with the first signal, are utilized in the computer for controlling the arm to center the tool for actuation fully into the selected tube opening.