Abstract:
A method and apparatus for improving yield ratio of testing are disclosed. The method includes the following steps. First of all, devices are tested and electromagnetic interference is measured. Next, the test results are examined for whether the devices pass the test or not. Then, electromagnetic interference data are examined for whether the electromagnetic interference data are over a predetermined standard if the devices fail the test. The above-mentioned steps are performed again if the electromagnetic interference data are over a predetermined standard. The test is terminated if the devices still fail the test and the values of electromagnetic interference are still over a predetermined standard.
Abstract:
A digital to analog converter (DAC) converting a digital code to an output voltage and capable of self calibration. The DAC includes a self-calibration signal generator generating a self-calibration signal based on the output voltage, a constant current generator, a first and a second current provider and a current-voltage converter. The current generating elements of the first and second current providers provide proportional currents, and are enabled/disabled according to the self-calibration signal and the digital code, respectively. The constant current is divided into the actual working current generating elements of the first current provider, and an output current is generated by the actual working current generating elements of the second current provider. The output current is converted to the output voltage by the current-voltage converter.
Abstract:
A method for fabricating a packaging substrate includes: providing a carrier having a first metal layer and a second metal layer formed on the first metal layer; forming a first circuit layer on the second metal layer and forming a separating portion on an edge of the second metal layer such that the separating portion is spaced from the first circuit layer; forming a dielectric layer on the second metal layer and the first circuit layer such that the first circuit layer and the separating portion are embedded in the dielectric layer and portions of the dielectric layer are formed between the first circuit layer and the separating portion; forming a second circuit layer on the dielectric layer; and applying forces on the separating portion so as to remove the first metal layer and the carrier, thereby maintaining the integrity of the first circuit layer.
Abstract:
A digital to analog converter (DAC) converting a digital code to an output voltage and capable of self calibration. The DAC includes a self-calibration signal generator generating a self-calibration signal based on the output voltage, a constant current generator, a first and a second current provider and a current-voltage converter. The current generating elements of the first and second current providers provide proportional currents, and are enabled/disabled according to the self-calibration signal and the digital code, respectively. The constant current is divided into the actual working current generating elements of the first current provider, and an output current is generated by the actual working current generating elements of the second current provider. The output current is converted to the output voltage by the current-voltage converter.
Abstract:
A method and apparatus for improving yield ratio of testing are disclosed. The method includes the following steps. First of all, devices are tested and electromagnetic interference is measured. Next, the test results are examined for whether the devices pass the test or not. Then, electromagnetic interference data are examined for whether the electromagnetic interference data are over a predetermined standard if the devices fail the test. The above-mentioned steps are performed again if the electromagnetic interference data are over a predetermined standard. The test is terminated if the devices still fail the test and the values of electromagnetic interference are still over a predetermined standard.
Abstract:
In an apparatus and method for automatic vehicle following, a pair of video cameras are mounted on the front portion of a following vehicle, and each camera generates image data indicative of a respective image of a distinctive mark located on a rearward portion of a lead vehicle. An image processor generates two one-dimensional image-intensity distributions for each mark image based on the image data, and in turn generates a respective edge-intensity distribution based on each image-intensity distribution. The edge-intensity distributions are each generated by taking the first derivative of the respective image-intensity distribution. The image processor in turn generates a respective feature vector based on each edge-intensity distribution, wherein the vector components of each feature vector define select characteristics of the respective mark image. The center points of the two corresponding mark images are determined based on the feature vectors, and a signal processor generates signals indicative of the following distance and the heading angle of the lead vehicle based on the image center points. A window enclosing each mark image is moved upon generating a new mark image to the approximate center point of the preceding image, to substantially follow image movements from one camera image frame to the next, and thereby suppress noise and enhance the image-processing speed of the apparatus.
Abstract:
A method for fabricating a packaging substrate includes: providing a carrier having a first metal layer and a second metal layer formed on the first metal layer; forming a first circuit layer on the second metal layer and forming a separating portion on an edge of the second metal layer such that the separating portion is spaced from the first circuit layer; forming a dielectric layer on the second metal layer and the first circuit layer such that the first circuit layer and the separating portion are embedded in the dielectric layer and portions of the dielectric layer are formed between the first circuit layer and the separating portion; forming a second circuit layer on the dielectric layer; and applying forces on the separating portion so as to remove the first metal layer and the carrier, thereby maintaining the integrity of the first circuit layer.
Abstract:
A self-cleansing portable urine collection device and method of collecting urine in a self-cleansing portable urine collection device. The collection device includes a housing that houses a urine collection receptacle, a cleansing container, a reservoir, and a vacuum suction pump. The receptacle is movable between a stored position and a use position in which the receptacle is configured to collect urine from a user. The cleansing container is configured to supply a cleansing solution to the receptacle. The reservoir is configured to receive the urine and the cleansing solution collected by the receptacle. A vacuum suction pump is disposed within the housing downstream of the reservoir and is configured to transport the urine and the cleansing solution from the receptacle to the reservoir.
Abstract:
The present invention is directed to a calibration block for use in calibrating a 3D scanner, a scanner system including the calibration block, and the use of the calibration block to calibrate a scanner which includes 2 cameras and a line generator which are in a fixed relationship to each other.
Abstract:
An analog to digital converter having an input stage amplifier array, an input stage voltage divider array, a comparator array and an encoder. The input stage amplifier array calculates and amplifies the difference between an input signal and a plurality of reference signals to generate a plurality of amplified differences. The input stage voltage divider array averages every two adjacent amplified differences to generate a plurality of average signals. The comparator array compares the average signals with a threshold value and outputs the compared results to the encoder for digital data representing the value of the input signal.