Abstract:
An analyzer apparatus and method of use thereof is described to dynamically irradiate a sample with incident light where the incident light is varied in time in terms of any of: position, radial position relative to a point of the skin of a subject, solid angle, incident angle, depth of focus, energy, and/or intensity. For example, the incident light is varied in radial position as a function of time relative to one or more of a sample site, a point on skin of the subject, a detection optic, and/or a sample volume observed by a detection system. The radially varied incident light is used to enhance and/or vary light probing the epidermis, the dermis, and/or the subcutaneous fat of the subject or of a group of subjects.
Abstract:
A synthesizer synthesizes Zyotons, waveforms that without a collision can travel substantially unperturbed in a propagation medium over a specified distance, for extracting via collision computing properties of interest of signals, such as the occurrence/absence of events and presence or concentrations of substances such as blood glucose, toxic chemicals, etc., obtained from high noise/clutter environments. The Zyotons are synthesized using base waveform families/generator functions unrelated to the signal environment. The Zyotons and corresponding carrier kernels include component(s) adapted to correspond to a signal property of interest and other component(s) adapted to correspond to other properties, such as noise and clutter. The number of each type of component(s) may be determined using a representative signal obtained from the environment that is optionally transformed via derivitization, addition of noise and/or another representative signal, etc. A base waveform family/generator function can be selected according to the representative signal morphology.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, illumination is directed to the medium and corresponding radiation from the medium is collected. Spectral energy changes associated with fragment(s)/feature(s) obtained from the collected radiation are determined using collision computing. Such spectral energy changes generally represent analyte concentration. The illumination is controlled to target a particular volume of the medium and/or such that the spectral energy changes become directionally monotonic with respect to analyte concentration. The illumination parameters include: intensity, wavelength, bandwidth, focal length, and/or duration of illumination, location and/or a size of an illuminated spot on the medium surface, depth at which the illumination can reach below the medium surface, spacing between the illuminated spot and a spot on the medium surface from which radiation is collected, and angle of the illumination relative to the medium surface.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without needing personalized calibration.
Abstract:
In a noninvasive system for measurement of heart rate and other heart-related characteristics a photoplethysmogram (PPG) obtained from a tissue is divided into several feature waveforms, each corresponding to a PPG window of a particular length. Conditioned features, containing frequency components specific to heart-related events, are derived from the features by modulating a carrier kernel with such features. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. For each conditioned feature, one or more collisions selectively amplify frequency components in features sourced from PPG, and respective energy change values are obtained from such amplified energy portions. The resulting energy change values are analyzed to determine a smallest time-window likely containing heart rate and other heart-related events in the PPG data stream. Over time, the detected events are grouped and analyzed to determine heart rate and other heart-related characteristics.
Abstract:
A synthetic projection system determines analyte concentration, such as blood glucose concentration, from a spectral-energy change associated with an uncharacterized instance of a medium in which the analyte is likely present. The projection system is factory calibrated for different instances of the medium, without needing instance-specific training or calibration. The projection system includes a set of projector curves, each relating spectral-energy change values obtained by analyzing reference medium samples to analyte concentrations in those samples. Each projector curve also corresponds to a respective range of energy-change gradients, determined using a group of surrogate media characterized according to analyte concentrations measured using a reference system. A spectral-energy-change gradient for the uncharacterized medium may be computed to select one of the projectors curves. Analyte concentration in the uncharacterized medium can be reliably computed at a specified high level of accuracy using the spectral-energy change associated therewith and the selected curve.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without needing personalized calibration.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, illumination is directed to the medium and corresponding radiation from the medium is collected. Spectral energy changes associated with fragment(s)/feature(s) obtained from the collected radiation are determined using collision computing. Such spectral energy changes generally represent analyte concentration. The illumination is controlled to target a particular volume of the medium and/or such that the spectral energy changes become directionally monotonic with respect to analyte concentration. The illumination parameters include: intensity, wavelength, bandwidth, focal length, and/or duration of illumination, location and/or a size of an illuminated spot on the medium surface, depth at which the illumination can reach below the medium surface, spacing between the illuminated spot and a spot on the medium surface from which radiation is collected, and angle of the illumination relative to the medium surface.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without needing personalized calibration.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without needing personalized calibration.