摘要:
The present invention generally relates to a MEMS digital variable capacitor (DVC) (900) and a method for manufacture thereof. The movable plate (938) within a MEMS DVC should have the same stress level to ensure proper operation of the MEMS DVC. To obtain the same stress level, the movable plate is decoupled from CMOS ground during fabrication. The movable plate is only electrically coupled to CMOS ground after the plate has been completely formed. The coupling occurs by using the same layer (948) that forms the pull-up electrode as the layer that electrically couples the movable plate to CMOS ground. As the same layer couples the movable plate to CMOS ground and also provides the pull-up electrode for the MEMS DVC, the deposition occurs in the same processing step. By electrically coupling the movable plate to CMOS ground after formation, the stress in each of the layers of the movable plate can be substantially identical.
摘要:
The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. After measuring reflection coefficients of a device at three different DVC states, the reflection coefficient for all other DVC states can be calculated. Thus, based solely upon three reflection coefficient measurements, the antenna can be tuned to adjust for any changes in impedance at the antenna.
摘要:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
摘要:
The present invention generally relates to a method of operating a MEMS DVC while minimizing impact of the MEMS device on contact surfaces. By reducing the drive voltage upon the pull-in movement of the MEMS device, the acceleration of the MEMS device towards the contact surface is reduced and thus, the impact velocity is reduced and less damage of the MEMS DVC device occurs.
摘要:
The present invention generally relates to a method for forming a MEMS device and a MEMS device formed by the method. When forming the MEMS device, sacrificial material is deposited around the switching element within the cavity body. The sacrificial material is eventually removed to free the switching element in the cavity. The switching element has a thin dielectric layer thereover to prevent etchant interaction with the conductive material of the switching element. During fabrication, the dielectric layer is deposited over the sacrificial material. To ensure good adhesion between the dielectric layer and the sacrificial material, a silicon rich silicon oxide layer is deposited onto the sacrificial material before depositing the dielectric layer thereon.
摘要:
The present invention generally relates to a MEMS DVC having a shielding electrode structure between the RF electrode and one or more other electrodes that cause a plate to move. The shielding electrode structure may be grounded and, in essence, block or shield the RF electrode from the one or more electrodes that cause the plate to move. By shielding the RF electrode, coupling of the RF electrode to the one or more electrodes that cause the plate to move is reduced and capacitance modulation is reduced or even eliminated.
摘要:
The present invention generally relates to a DVC having a charge-pump coupled to a MEMS device. The charge-pump is designed to control the output voltage delivered to the electrodes, such as the pull-in electrode or the pull-off electrode, that move the switching element within the MEMS device between locations spaced far from and disposed closely to the RF electrode.
摘要:
The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.
摘要:
The current disclosure shows how to make a fast switching array of mirrors for projection displays. Because the mirror does not have a via in the middle connecting to the underlying spring support, there is an improved contrast ratio that results from not having light scatter off the legs or vias like existing technologies. Because there are no supporting contacts, the mirror can be made smaller making smaller pixels that can be used to make higher density displays. In addition, because there is not restoring force from any supporting spring support, the mirror stays in place facing one or other direction due to adhesion. This means there is no need to use a voltage to hold the mirror in position. This means that less power is required to run the display.
摘要:
The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. After measuring reflection coefficients of a device at three different DVC states, the reflection coefficient for all other DVC states can be calculated. Thus, based solely upon three reflection coefficient measurements, the antenna can be tuned to adjust for any changes in impedance at the antenna.