摘要:
Primary flight controls (10) for main and/or tail rotors (4) of helicopters with electro-mechanical interface between any of fly-by-wire and/or fly-by-light controls and hydraulic servo actuators (8) for control force amplification towards said main and/or tail rotor controls (4). For each of the main and/or tail rotor controls (4) there is provided but one of the hydraulic servo actuators (8), connected by one mechanical linkage (7) to one electro motor (5), said one hydraulic servo actuator (8) being of the type having the one mechanical linkage (7) connected to its input (29) and its output (30) and the one electro motor (5) being of the direct drive type, the position of said electro motor (5) having a reference to said one mechanical linkage (7) and the torque delivered by said electro motor (5) to the hydraulic servo actuator (8) being related to the power consumption of said electro motor (5).
摘要:
A protection device (10) having a set (11) of protection inflatable members (15, 20, 25) including left and right inflatable lateral means (20, 25) that are suitable for co-operating respectively with the left and right shoulder straps (6, 7), said device (10) possessing an inflator (30) for inflating said protection inflatable members (15, 20, 25). The device includes a headrest (35) carrying a nape airbag (15) of said set of inflatable members (15, 20, 25), the nape airbag (15) including one passage (16, 17) per inflatable lateral means (20, 25) in order to convey fluid to each inflatable lateral means (20, 25), said headrest (35) being provided with a hollow support (40) carrying said inflator (30) and with a fluid diffusion box (50) arranged in the nape airbag (15) so as to convey a fluid from the inflator (30) to the nape airbag (15) and to the inflatable lateral means (20, 25).
摘要:
For emergency piloting of a manual flight control system (7) of an aircraft (1), in the event of flexible connection means (26) breaking, an upstream control device (8) takes authority over the electronic control unit (29) of series actuator (21). An output pivoting quadrant (25) is subjected by a centering rod (22) to a blocking and centering action. In the event of the system breaking, the output pivoting quadrant (25) forms a bearing point for the series actuator (21), so that an emergency control actuate a airfoil surface (11).
摘要:
An aircraft (1) having a rotary wing (2) and turboshaft engines (11, 12, 13) for driving said rotary wing (2). The aircraft then includes two main engines (11, 12) that are identical, each capable of operating at at least one specific rating associated with a main power (maxTOP, OEIcont), and a secondary engine (13) capable of operating at at least one specific rating by delivering secondary power (maxTOP′, OEIcont′) proportional to the corresponding main power (maxTOP, OEIcont) in application of a coefficient of proportionality (k) less than or equal to 0.5, said aircraft having a control system (20) for driving the rotary wing by causing each main engine (11, 12) to operate continuously throughout a flight, and by using the secondary engine (13) as a supplement during at least one predetermined specific stage of flight.
摘要:
A reversible electrical machine (1) comprising: a first electrical device (10) having a first stator (11) and a first rotor (12); a second electrical device (20) including a second rotor (22) and a second stator (21) together with an outlet shaft (50) and first disengageable coupling means (30) enabling said first and second rotors (12, 22) to be associated and dissociated in rotation. Said reversible electrical machine (1) also includes second disengageable coupling means (40) that are disengageable under a predetermined force and that mechanically connect said second rotor (22) to said outlet shaft (50). Said first electrical device (10) is a motor for transmitting high mechanical power to said outlet shaft (50), while said second electrical device (20) is a motor-generator for operating in motor mode to transmit additional mechanical power to said outlet shaft (50), and in generator mode for receiving mechanical power from said outlet shaft (50).
摘要:
The present invention relates to an electric machine (1) consisting of a stator (10) that is provided with at least one exciter unit (11) consisting of a coil (12), at least two annular yokes (13a,13b) and at least one row of intermediate pieces (15), and a rotor (20) having a structure (21) and at least one receiver unit (22) consisting of at least two series (25) of at least two rows (24) of magnets (23). Two sides (131,132) of each yoke (13) consist of the first teeth (14), fitting with the said intermediate pieces (15) on a face (121) of the said exciter unit (11) and alternatingly forming the second north poles and the second south poles. Each series (23) is positioned opposite one face (121), forming an air gap (30) with the said exciter unit (11), with the electric machine (1) thus including at least two air gaps (30), with a flux F thus circulating inside the said electric machine (1), dividing and regrouping itself in the vicinity of the said magnets (23) and of the said yokes (13).
摘要:
A multi-layered transparency (2.1, 2.2) for an aircraft cockpit, particularly a multi-layered window for a helicopter cockpit (1), comprising: one core layer (6) made of a polymer of either PC or mcPA and at least one foil extruded, adhesive interlayer film (3.1, 3.2, 3.3) unilaterally bonded to said at least one core layer (6). At least one outer top layer (5.1, 5.2) made of mcPA, preferably containing additives, is unilaterally attached to said at least one foil extruded adhesive interlayer film (3.1, 3.2, 3.3) distal to said at least one core layer (6) and a scratch resistant outer top coating (4.1, 4.2) is provided unilaterally to said at least one outer top layer (5.1, 5.2) distal to said at least one foil extruded adhesive interlayer film (3.1, 3.2, 3.3). The invention is as well related to a method of producing such a multi-layered transparency.
摘要:
The invention is related to a grid type fiber composite structure (1) comprising a grid of polygon cell modules (5) comprising at least three substantially u-shaped ribs made of fiber composite layer (8, 13) and a foam core (9) provided inside each cell module (5) for support of said u-shaped ribs. Said foam core (9) is along a base essentially in line with one of said flat cap sections (11, 12). At least one layer of strip (2, 3) is provided outside said flat cap sections (11, 12) and a skin sheet (4) is unilaterally attached to said cell modules (5) essentially in line with one of said flat cap sections (11, 12). The invention is as well related to a method of manufacturing such a grid type fiber composite structure (1).
摘要:
A rotorcraft fitted with means for mounting at least one front avionics rack (3, 3′) and man-machine interface instruments (2) on board a fuselage structure (4). A mounting structure (1) comprises a slotted body forming compartments for receiving interface instruments (2), the avionics rack (3, 3′), and a unitary cabling assembly (12) suitable for incorporating as a block with the mounting structure (1). The mounting structure (1) is installed as a block on the fuselage structure (4) after its functioning has been verified. The unitary cabling assembly (12) may also include separation connectors (14) segregating communications of the front avionics rack (3, 3′) respectively with remote computers (5) by means of a primary communications bus of the multiplexed, unidirectional, or bidirectional type, and with ancillary equipment (6) and/or with on-board instruments (7) by means of a secondary fieldbus.
摘要:
The invention relates to a compound helicopter (1) comprising a fuselage (2), at least one engine (14) and a main rotor (11) driven by said at least one engine (14). At least one pair of fixed wings are mounted in an essentially horizontal plane on a left hand and a right hand side of the fuselage (2) and horizontally oriented propulsion devices (12, 13) are mounted to each of said fixed wings, said fixed wings encompassing each a drive shaft (16) from said at least one engine (14). Each fixed wing comprises a lower main wing (18) and an upper secondary wing (19) being connected to each other within an interconnection region (22). The propulsion devices (12, 13) are arranged at said interconnection region (22) and said upper secondary wing (19) houses the drive shaft (16) from said at least one engine (14).