摘要:
A method of diagnosis and treatment of tumors using High Intensity Focused Ultrasound is provided. The method of diagnosing the presence of a tumor in a patient comprises the steps of subjecting a tumor to high intensity focused ultrasound (HIFU) to cause the tumor cells to release cellular material and evaluating the cellular material for a tumor marker. The method of treating a tumor in a patient can also comprise the step of subjecting a tumor to high intensity focused ultrasound (HIFU) to provoke an immune response.
摘要:
Ultrasound transducers are disclosed which focus acoustic energy at various focal locations while minimizing focal spot degradation and the generation of unwanted on-axis or off-axis energy concentrations through using a generally constant f-number at the various focal locations.
摘要:
A method and apparatus is disclosed for determining the success of a proposed HIFU Treatment, of an ongoing HIFU Treatment, and/or of a completed HIFU Treatment. An energy density of a given HIFU Treatment may be used as a comparison factor between the given HIFU Treatment and other HIFU Treatments and as a predictor of the success of the given HIFU Treatment. One exemplary energy density is the amount of energy deposited in the treatment region divided by the volume of the treatment region. Another exemplary energy density is the amount of energy deposited in the treatment region divided by the pre-treatment mass of the treatment region. A method and apparatus is disclosed to detect the presence of focal hyperechoic features and non-focal hyperechoic features. A method and apparatus is disclosed to detect the presence of an acoustic obstruction.
摘要:
A transducer for use in a localization and therapeutic ultrasound system. The transducer of the present invention includes multiple elements that are driven separately. The elements operate together to focus a continuous wave ultrasound beam at a focal zone that is at a variable distance from the elements. The transducer includes a mechanism to adjust the focal distance so that the focal zone may be moved to multiple depths.
摘要:
A HIFU System (100) is disclosed which may automatically generate a proposed treatment plan for treating a tissue treatment area (10) with HIFU Therapy. In one example, the proposed treatment plan includes a plurality of treatment sites selected based on a three-dimensional model generated from ultrasound data. In another example, the proposed treatment plan excludes portions of the tissue treatment area (10) corresponding to blood flow, such as the neuro-vascular bundles (20) when treating the prostate (11).
摘要:
A method and apparatus is disclosed for determining the success of a proposed HIFU Treatment, of an ongoing HIFU Treatment, and/or of a completed HIFU Treatment. An energy density of a given HIFU Treatment may be used as a comparison factor between the given HIFU Treatment and other HIFU Treatments and as a predictor of the success of the given HIFU Treatment. One exemplary energy density is the amount of energy deposited in the treatment region divided by the volume of the treatment region. Another exemplary energy density is the amount of energy deposited in the treatment region divided by the pre-treatment mass of the treatment region. A method and apparatus is disclosed to detect the presence of focal hyperechoic features and non-focal hyperechoic features. A method and apparatus is disclosed to detect the presence of an acoustic obstruction.
摘要:
A method of treatment by ultrasound comprises providing a first, ultrasound field intensity-to-voltage transducer sized for insertion into the vicinity of a treatment site and a second ultrasound treatment transducer. The free field intensities created by the second transducer in response to various second transducer exciting signal levels are determined. The first transducer outputs in the free field in response to various second transducer exciting signal levels are also determined. The first transducer is inserted into the vicinity of the treatment site, and the second transducer is positioned to create an ultrasound field at the treatment site. The distance from the second transducer to the first transducer is determined. An exciting signal is applied to the second transducer. The output of the first transducer is determined. The level of the exciting signal applied to the second transducer, the determined distance and the first transducer output are employed to determine the attenuation coefficient of the tissues between the second transducer and the first transducer.