Abstract:
A circuit is disclosed for a programmable logic device (PLD) environment that converts unordered bits in a PLD domain to fixed-width vectors in a vector domain. The fixed-width vectors may be used within a vector processing block (VPB) that operates on data in vector format. The PLD includes multiple programmable logic blocks that are configurable by a user. The logic blocks operate on data at a bit level resulting in unordered bits of information in a PLD domain. However, a vector processing block operates on data on a vector level (e.g., 8 bits, 16 bits, 32 bits, 64 bits, etc.). Thus, an interface is coupled between the programmable logic blocks and the vector processing block that converts at least a portion of the unordered bits of information from the PLD domain to one or more fixed-width vectors for use in the vector processing block. The interface may also perform scaling and/or sign extension on the unordered bits, to further free up expensive resources in the PLD domain.
Abstract:
An improved EEPROM cell structure and a method of fabricating the same is provided so as to improve data retention. The EEPROM cell includes a stacked dielectric structure consisting of a thin tunnel oxide layer and a high-k dielectric layer to function as the tunneling dielectric barrier so as to suppress leakage current.
Abstract:
An EEPROM device exhibiting high saturation current and low signal propagation delay and a process for fabricating the device that includes the formation of refractory metal silicide regions in the source and the drain regions and the gate electrode of an MOS transistor within an EEPROM memory cell. A floating-gate protect layer is formed over the floating-gate electrode and a relatively thick cap oxide layer is formed to overlie the floating-gate protect layer and the source and drain regions and gate electrode of the MOS transistor. A doped oxide layer is formed to overlie the cap oxide layer. The cap oxide layer is formed to a thickness sufficient to create strain in the channel region of the MOS transistor, while not having a thickness that could cause poor data retention in the EEPROM memory cell.
Abstract:
A method of assigning logic functions to macrocells assures that a maximum number of macrocells are assigned two or more logic functions. A first logic function is assigned to a macrocell without restriction. Rules are then applied to the macrocell to determine whether a second logic function may be assigned to the macrocell, and, if so, whether any restrictions exist on what the second logic function may be.
Abstract:
An active termination resistor is provided within a feedback loop circuit thus advantageously increasing the stability of the feedback loop circuit. In particular, the active termination resistor traces the impedance of the feedback loop such that R(f).congruent.1/GM3(f). The active resistor may also be configured to track the value of the resistor to set the feedback transconductance over process and temperature variations to ensure stability of the feedback loop over these variations.
Abstract:
A programmable analog circuit apparatus receives a differential analog input signal and provides a processed differential analog output signal. The programmable analog circuit apparatus includes a first input transconductor, a differential amplifiers, and a feedback transconductor. The first input transconductor has a programmable transconductance and includes an input transconductor positive input terminal and an input transconductor negative input terminal and an input transconductor positive output terminal and an input transconductor negative output terminal. The positive and negative input terminals are coupled to receive the differential analog input signal. The differential amplifier includes first and second amplifier input terminals and first and second amplifier output terminals. The positive and negative input transconductor output terminals are coupled to the first and second differential amplifier input terminals. The amplifier output terminals are coupled to the first and second amplifier input terminals. The amplifier provides the processed differential analog output signal via the amplifier output terminals. The feedback transconductor includes a positive feedback transconductor input terminal and a negative feedback transconductor input terminal and a positive feedback transconductor output terminal and a negative feedback transconductor output terminal. The positive and negative feedback transconductor input terminals are coupled to the first and second amplifier output terminals and the positive and negative feedback transconductor output terminals are coupled to the first and second amplifier input terminals. The feedback transconductor output terminals has a high output impedance.
Abstract:
A programmable logic device is disclosed which is adapted to isolate the Miller capacitances of erased memory cells from the product terms and to limit the cell current drawn through the product term sense amplifiers. The invention substantially reduces the row switching noise coupled onto the product terms, allows high speed sense amplifier operation, and significantly reduces the power dissipated by the device. In accordance with the invention, the electrically erasable sense transistor for each memory cell is disposed between the cell select transistor and the product term sense amplifier, thereby isolating the Miller capacitance associated with the select transistor from the sense amplifier when the cell is in the erased (nonconductive) state. Separate product term ground lines are provided for each product term. A current limiter connects each product term ground line to ground, and is adapted to limit the current flow through each product term to a predetermined maximum level, typically about the maximum current level which may be passed through one conductive memory cell.
Abstract:
Device driver circuits based on H-bridges can be implemented to provide linear control of the H-bridge, reduce power losses, and reduce certain component size/cost. The driver circuits can use two feedback loops to operate the H-bridge in different regions and to guarantee that current flows through an H-bridge load device, such as a thermoelectric cooler, in only one direction at a given time. The H-bridge driver circuits can remove the possibility of high currents bypassing the load device and thus going directly through the switches on either side of the H-bridge driver. The H-bridge driver circuits also ensure careful control of the current applied to the H-bridge load device. Such driver circuits are particularly useful for controlling the current applied to thermoelectric devices.
Abstract:
A programmable semiconductor device comprising a plurality of I/O circuits arranged into blocks includes a routing structure for each block, wherein each routing structure may programmably route signals between its block's I/O circuits and the I/O circuits within the remaining blocks. Each I/O circuit associates with a pin such that each block has a set of pins. A SERDES and a FIFO buffer associate with each block. Each block's SERDES couples between the block's I/O circuits and the block's set of pins. Each FIFO buffer couples between the SERDES and its block's I/O circuits.
Abstract:
A programmable logic device includes a global clock structure and a plurality of localized clock structures. Each localized clock structure distributes a respective localized clock signal to a corresponding portion of the programmable logic device. The global clock structure distributes a global clock signal to all portions of the programmable logic device.