摘要:
Low density polishing pads and methods of fabricating low density polishing pads are described. In an example, a polishing pad for polishing a substrate includes a polishing body having a density approximately in the range of 0.4-0.55 g/cc. The polishing body includes a thermoset polyurethane material and a plurality of closed cell pores dispersed in the thermoset polyurethane material. Each of the plurality of closed cell pores has a shell composed of an acrylic co-polymer.
摘要:
Polishing pads with foundation layers and polishing surface layers are described. In an example, a polishing pad for polishing a substrate includes a foundation layer. A polishing surface layer is bonded to the foundation layer. Methods of fabricating polishing pads with a polishing surface layer bonded to a foundation layer are also described.
摘要:
The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.
摘要:
Polishing pads with multi-modal distributions of pore diameters are described. Methods of fabricating polishing pads with multi-modal distributions of pore diameters are also described.
摘要:
Homogeneous polishing pads for polishing semiconductor substrates using eddy current end-point detection are described. Methods of fabricating homogeneous polishing pads for polishing semiconductor substrates using eddy current end-point detection are also described.
摘要:
Polishing pads with a polishing surface layer having an aperture or opening above a transparent foundation layer are described. In an example, a polishing pad for polishing a substrate includes a foundation layer having a global top surface and a transparent region. A polishing surface layer is attached to the global top surface of the foundation layer. The polishing surface layer has a polishing surface and a back surface. An aperture is disposed in the polishing pad from the back surface through to the polishing surface of the polishing surface layer, and aligned with the transparent region of the foundation layer. The foundation layer provides an impermeable seal for the aperture at the back surface of the polishing surface layer. Methods of fabricating such polishing pads are also described.
摘要:
The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior themo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.
摘要:
CMP pads having novel groove configurations are described. For example, described herein are CMP pads comprising primary grooves, secondary grooves, a groove pattern center, and an optional terminal groove. The CMP pads may be made from polyurethane or poly (urethane-urea), and the grooves produced therein may be made by a method from the group consisting of molding, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.