摘要:
A plasmonic phase modulator is provided. The modulator has a conductive layer, and a dielectric layer disposed on the conductive layer. A plasmonic layer is disposed on the dielectric layer. A plasmonic layer is disposed on the dielectric layer. The plasmonic layer is conductive to surface plasmon polariton (SPP) waves. The plasmonic layer may be, for example, a graphene sheet. A voltage signal source is operatively connected between the conductive layer and the plasmonic layer for modulating a propagation speed of an SPP wave propagating on the plasmonic layer.
摘要:
A plasmonic phase modulator is provided. The modulator has a conductive layer, and a dielectric layer disposed on the conductive layer. A plasmonic layer is disposed on the dielectric layer. A plasmonic layer is disposed on the dielectric layer. The plasmonic layer is conductive to surface plasmon polariton (SPP) waves. The plasmonic layer may be, for example, a graphene sheet. A voltage signal source is operatively connected between the conductive layer and the plasmonic layer for modulating a propagation speed of an SPP wave propagating on the plasmonic layer.
摘要:
A fiberoptic assembly for optical spectroscopic analysis of a sample. In a preferred embodiment, the assembly is well-suited for use inside the working channel of an endoscope and comprises a tubular outer jacket and a tubular inner jacket, the inner jacket being coaxial with and positioned inside the outer jacket. The open front end of the inner jacket is spaced rearwardly a short distance relative to the open front end of the outer jacket. The outer jacket has an outer diameter of approximately 2.2 mm. The assembly also includes a plug made of fused silica. The plug has a front cylindrical portion of comparatively large cross-sectional diameter and a rear cylindrical portion of comparatively small cross-sectional diameter. The front portion is mounted within the outer jacket by a friction-fit and extends longitudinally from the open front end thereof to the open front end of the inner jacket. The rear portion of the plug is mounted within the inner jacket by a friction-fit and extends rearwardly from its open front end for a short distance. A narrow-band filter in the form of a dielectric-coating is formed on the rear end of the rear portion of the plug. The assembly also includes an illumination fiber centered within the inner jacket and spaced rearwardly a short distance from the narrow-band filter. The output end of the illumination filter is shaped to collimate light emergent therefrom. The assembly additionally comprises a plurality of light collection fibers, which fibers are disposed within the outer tubular jacket and are spaced about the outside of the inner tubular jacket.
摘要:
A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.
摘要:
This invention relates to the novel identification of myelin-associated glycoprotein ("MAG") as a potent inhibitor of neural regeneration. More particularly, this invention relates to compositions and methods useful for reversing inhibition of neural regeneration in the central and peripheral nervous system. Assays to monitor the effects of MAG on neural regeneration and to identify agents which will block or promote the inhibitory effects of MAG on neural outgrowth are provided. Screening methods for identifying such agents are also provided. This invention also relates to compositions and methods using agents that can reverse the inhibitory effects of MAG on neural regeneration. Methods for regulating and for promoting neural growth or regeneration in the nervous system, methods for treating injuries or damage to nervous tissue or neurons, and methods for treating neural degeneration associated with disorders or diseases, comprising the step of administering at least one of the compositions according to this invention are provided.
摘要:
A multicore optical component and corresponding methods of converting a linearly or circularly polarized Gaussian beam of light into a radially or azimuthally polarized beam of light are provided. The multicore optical component comprises a plurality of birefringent, polarization maintaining elliptical cores. The elliptical cores collectively define an azimuthally varying distribution of major axes where the orientation of the major axis of a given elliptical core is given by φ=(180/N)*n+θ where n is the core number and θ is any angle greater than 0°.
摘要翻译:提供了多芯光学部件和将线性或圆偏振高斯光束转换成径向或方位偏振光束的相应方法。 多芯光学部件包括多个双折射,保持偏振的椭圆形芯。 椭圆芯共同定义长轴的方位角变化分布,其中给定椭圆芯的主轴的取向由φ=(180 / N)* n +θ给出,其中n是核心数,θ是任何角度 超过0°。
摘要:
The present invention provides systems and methods for non-destructively detecting material abnormalities beneath a coated surface, comprising a mid-infrared (MIR) detection unit for illuminating an area of the coated surface and detecting light reflected from the illuminated area of the coated surface, and a processing unit for producing an image from optical characteristics received from the MIR detection unit. In addition, the system may further comprise a scanning unit for moving the MIR detection unit to a next area.
摘要:
A method of superimposing N optical transmission modes for collective transmission along a multimode optical fiber is provided where each of the N optical signals comprises N distinct superimposed transmission modes (M1, M2, . . . ) and a portion of each of the N propagating optical signals is sampled at a receiving end of the data transmission network. N2−1 distinct measurement conditions are derived from a transmission matrix T and a special unitary matrix group SU(N) corresponding to the superimposed transmission modes (M1, M2, . . . ) at the receiving end of the data transmission network and N2−1 measurements are extracted from the sampled signals. The extracted N2−1 measurements are used to solve a matrix equation corresponding to the generated SU(N) matrices and the output matrix transposed and used to generating principal state launch conditions from the eigenvectors of the transposed output matrix to form a principal state in each of the N optical signals.
摘要:
The present invention provides systems and methods for non-destructively detecting material abnormalities beneath a coated surface, comprising a mid-infrared (MIR) detection unit for illuminating an area of the coated surface and detecting light reflected from the illuminated area of the coated surface, and a processing unit for producing an image from optical characteristics received from the MIR detection unit. In addition, the system may further comprise a scanning unit for moving the MIR detection unit to a next area.