Abstract:
Embodiments of the present invention are directed to devices, systems and methods adapted for implementing intermittent displacement of blood to mitigate peripheral nerve neuropathy such as that induced by chemotherapeutic agents (i.e., chemotherapy-induced neuropathy (CIN)) that are administered to a patient. Such devices, systems and methods advantageously provide for precise, uniform and controlled blood flow occluding (and optionally blood displacing) compression along irregular surfaces of an appendage of a patient. Such precise, uniform and controlled blood occluding compression is imparted upon the epidermal and dermis skin layers within the aforementioned areas of a patient's extremities to decrease the time that free nerve endings located in the epidermal and encapsulated nerve endings located in the dermis skin layers are exposed to nerve damaging chemotherapy chemicals, thereby substantially decreasing CIN caused by prolonged exposure to such chemicals.
Abstract:
Embodiments of the present invention are directed to devices, systems and methods adapted for implementing intermittent displacement of blood to mitigate peripheral nerve neuropathy such as that induced by chemotherapeutic agents (i.e., chemotherapy-induced neuropathy (CIN)) that are administered to a patient. Such devices, systems and methods advantageously provide for precise, uniform and controlled blood flow occluding (and optionally blood displacing) compression along irregular surfaces of an appendage of a patient. Such precise, uniform and controlled blood occluding compression is imparted upon the epidermal and dermis skin layers within the aforementioned areas of a patient's extremities to decrease the time that free nerve endings located in the epidermal and encapsulated nerve endings located in the dermis skin layers are exposed to nerve damaging chemotherapy chemicals, thereby substantially decreasing CIN caused by prolonged exposure to such chemicals.
Abstract:
Embodiments of the present invention are directed to devices, systems and methods adapted for implementing intermittent displacement of blood to mitigate peripheral nerve neuropathy such as that induced by chemotherapeutic agents (i.e., chemotherapy-induced neuropathy (CIN)) that are administered to a patient. Such devices, systems and methods advantageously provide for precise, uniform and controlled blood flow occluding (and optionally blood displacing) compression along irregular surfaces of an appendage of a patient. Such precise, uniform and controlled blood occluding compression is imparted upon the epidermal and dermis skin layers within the aforementioned areas of a patient's extremities to decrease the time that free nerve endings located in the epidermal and encapsulated nerve endings located in the dermis skin layers are exposed to nerve damaging chemotherapy chemicals, thereby substantially decreasing CIN caused by prolonged exposure to such chemicals.
Abstract:
A sealing device for a foot therapeutic apparatus includes an airtight sleeve and a sealing member. The airtight sleeve includes a treatment box connecting end and a limb inlet end. The sealing member is fixedly mounted at the limb inlet end. The sealing member includes a tightening band and an annular gas bag located on the outer periphery of the tightening band. The annular gas bag is connected to a gas source. A foot therapeutic apparatus with the sealing device includes a treatment chamber and an electrical chamber. The treatment chamber comprises a treatment box, and the sealing device is arranged on the treatment box. A box opening is arranged at a top of the treatment box, and the treatment box connecting end of the airtight sleeve of the sealing device is hermetically connected to the box opening.
Abstract:
Formulations of human amniotic fluid and methods of use thereof for treatment of lung disorders, and/or injuries have been developed. The formulations are suitable for topical delivery to the lung for treatment of lung disorders including chronic obstructive pulmonary disorders (COPD), asthma, emphysema, bronchiectasis, chronic bronchitis, interstitial lung disease, alpha-1 antitrypsin emphysema, as well as for treatment of acute lung injuries. Methods including administering specifically formulated, diluted sterile de-cellularized human amniotic fluids topically to the lungs, preferably as aerosol droplets, are described. In particular, the methods involving administration of the amniotic fluid formulation in the form of aerosol droplets with size between about 1.5 μm to about 5 μm, preferably from about 2.5 μm to about 3.5 μm, inclusive, using apparatus such as high-efficiency vibrating mesh nebulizers, are described. Formulations described can treat, or prevent one or more symptoms of a chronic lung disorder.
Abstract:
A method for treating cancer is described using combination therapies comprising the use of hyperbaric oxygen with histone deacetylase inhibitors, with and without glycolytic therapies. The patient is subjected to a hyperbaric environment of substantially pure oxygen. A predetermined dose of one or more HDACI substances is administered to the patient. In addition, glycolitic inhibitors may also be administered. Dosages, pressures, and durations are selected as described herein to have a therapeutic effect on the patient.
Abstract:
A gas mist pressure bathing system for preparing a gas mist by pulverizing and dissolving a gas including carbon dioxide or oxygen or a mixed gas of carbon dioxide and oxygen, and a liquid, and causing the gas mist to directly contact skin and mucous membrane of a living organism, includes a gas supply device, a gas mist generating device having a liquid storage, a nozzle discharging the gas, and a liquid sucking pipe for sending the liquid to the nozzle, a covering member for covering the skin and mucous membrane, sensors, and a control device. The gas mist generating device further includes a gas introduction device for supplying the gas into the gas mist generating device, and generating an air current guiding the gas mist to the covering member to increase supplying pressure of the gas mist into the covering member.
Abstract:
A method for treating cancer is described using combination therapies comprising the use of hyperbaric oxygen with histone deacetylase inhibitors, with and without glycolytic therapies. The patient is subjected to a hyperbaric environment of substantially pure oxygen. A predetermined dose of one or more HDACI substances is administered to the patient. In addition, glycolitic inhibitors may also be administered. Dosages, pressures, and durations are selected as described herein to have a therapeutic effect on the patient.
Abstract:
The present invention relates to a device for reducing electro-magnetic pollution (1) which measures the electromagnetic radiation amount in the environment, and enables to reduce radiation when the radiation amount exceeds a predetermined threshold value.
Abstract:
A hyperbaric dressing has a fluid impermeable sheet and a fluid permeable layer with a sheet of porous material positioned between these two layers with passageways to permit fluid to flow out of the dressing.